Suppr超能文献

一种基于卷积神经网络和长短期记忆的数据增强深度学习方法用于精神分裂症的诊断。

A deep learning approach for diagnosis of schizophrenia disorder via data augmentation based on convolutional neural network and long short-term memory.

作者信息

Shams Amin Mashayekhi, Jabbari Sepideh

机构信息

Electrical Engineering Department, Engineering Faculty, University of Zanjan, Zanjan, Iran.

出版信息

Biomed Eng Lett. 2024 Feb 24;14(4):663-675. doi: 10.1007/s13534-024-00360-9. eCollection 2024 Jul.

Abstract

Schizophrenia (SZ) is a severe, chronic mental disorder without specific treatment. Due to the increasing prevalence of SZ in societies and the similarity of the characteristics of this disease with other mental illnesses such as bipolar disorder, most people are not aware of having it in their daily lives. Therefore, early detection of this disease will allow the sufferer to seek treatment or at least control it. Previous SZ detection studies through machine learning methods, require the extraction and selection of features before the classification process. This study attempts to develop a novel, end-to-end approach based on a 15-layers convolutional neural network (CNN) and a 16-layers CNN- long short-term memory (LSTM) to help psychiatrists automatically diagnose SZ from electroencephalogram (EEG) signals. The deep model uses CNN layers to learn the temporal properties of the signals, while LSTM layers provide the sequence learning mechanism. Also, data augmentation method based on generative adversarial networks is employed over the training set to increase the diversity of the data. Results on a large EEG dataset show the high diagnostic potential of both proposed methods, achieving remarkable accuracy of 98% and 99%. This study shows that the proposed framework is able to accurately discriminate SZ from healthy subject and is potentially useful for developing diagnostic tools for SZ disorder.

摘要

精神分裂症(SZ)是一种严重的慢性精神障碍,尚无特效治疗方法。由于精神分裂症在社会中的患病率不断上升,且该疾病的特征与双相情感障碍等其他精神疾病相似,大多数人在日常生活中并未意识到自己患有此病。因此,早期发现这种疾病将使患者能够寻求治疗或至少对其进行控制。以往通过机器学习方法进行的精神分裂症检测研究,在分类过程之前需要进行特征提取和选择。本研究试图基于一个15层卷积神经网络(CNN)和一个16层CNN-长短期记忆网络(LSTM)开发一种新颖的端到端方法,以帮助精神科医生从脑电图(EEG)信号中自动诊断精神分裂症。深度模型使用CNN层来学习信号的时间特性,而LSTM层提供序列学习机制。此外,在训练集上采用基于生成对抗网络的数据增强方法来增加数据的多样性。在一个大型脑电图数据集上的结果显示了两种提出的方法具有很高的诊断潜力,准确率分别达到了98%和99%。这项研究表明,所提出的框架能够准确地区分精神分裂症患者和健康受试者,并且对于开发精神分裂症障碍的诊断工具可能是有用的。

相似文献

2
Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal.
Comput Biol Med. 2022 Jul;146:105570. doi: 10.1016/j.compbiomed.2022.105570. Epub 2022 Apr 28.
3
A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns.
IEEE J Biomed Health Inform. 2020 May;24(5):1333-1343. doi: 10.1109/JBHI.2019.2941222. Epub 2019 Sep 13.
4
Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals.
Phys Eng Sci Med. 2020 Dec;43(4):1229-1239. doi: 10.1007/s13246-020-00925-9. Epub 2020 Sep 14.
6
A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals.
Comput Biol Med. 2022 Apr;143:105288. doi: 10.1016/j.compbiomed.2022.105288. Epub 2022 Feb 10.
8
Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals.
J Med Syst. 2019 May 28;43(7):205. doi: 10.1007/s10916-019-1345-y.
10
An Effective Hybrid Deep Learning Model for Single-Channel EEG-Based Subject-Independent Drowsiness Recognition.
Brain Topogr. 2024 Jan;37(1):1-18. doi: 10.1007/s10548-023-01016-0. Epub 2023 Nov 23.

引用本文的文献

1
A CNN-Transformer Fusion Model for Proactive Detection of Schizophrenia Relapse from EEG Signals.
Bioengineering (Basel). 2025 Jun 12;12(6):641. doi: 10.3390/bioengineering12060641.
2
Alzheimer's disease recognition based on waveform and spectral speech signal processing.
Biomed Eng Lett. 2024 Nov 28;15(1):261-272. doi: 10.1007/s13534-024-00444-6. eCollection 2025 Jan.
3
Mental illness detection through harvesting social media: a comprehensive literature review.
PeerJ Comput Sci. 2024 Oct 7;10:e2296. doi: 10.7717/peerj-cs.2296. eCollection 2024.

本文引用的文献

1
A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals.
Phys Eng Sci Med. 2022 Mar;45(1):83-96. doi: 10.1007/s13246-021-01083-2. Epub 2021 Nov 25.
2
A hybrid deep neural network for classification of schizophrenia using EEG Data.
Sci Rep. 2021 Feb 25;11(1):4706. doi: 10.1038/s41598-021-83350-6.
3
Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals.
Phys Eng Sci Med. 2020 Dec;43(4):1229-1239. doi: 10.1007/s13246-020-00925-9. Epub 2020 Sep 14.
4
A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns.
IEEE J Biomed Health Inform. 2020 May;24(5):1333-1343. doi: 10.1109/JBHI.2019.2941222. Epub 2019 Sep 13.
5
State-of-the-Art Deep Learning in Cardiovascular Image Analysis.
JACC Cardiovasc Imaging. 2019 Aug;12(8 Pt 1):1549-1565. doi: 10.1016/j.jcmg.2019.06.009.
6
A Computer-Aided Diagnosis System With EEG Based on the P3b Wave During an Auditory Odd-Ball Task in Schizophrenia.
IEEE Trans Biomed Eng. 2017 Feb;64(2):395-407. doi: 10.1109/TBME.2016.2558824.
7
Schizophrenia detection and classification by advanced analysis of EEG recordings using a single electrode approach.
PLoS One. 2015 Apr 2;10(4):e0123033. doi: 10.1371/journal.pone.0123033. eCollection 2015.
8
Diagnostic utility of quantitative EEG in un-medicated schizophrenia.
Neurosci Lett. 2015 Mar 4;589:126-31. doi: 10.1016/j.neulet.2014.12.064. Epub 2015 Jan 13.
9
Entropy and complexity measures for EEG signal classification of schizophrenic and control participants.
Artif Intell Med. 2009 Nov;47(3):263-74. doi: 10.1016/j.artmed.2009.03.003. Epub 2009 Apr 29.
10
Schizophrenia, "just the facts" 4. Clinical features and conceptualization.
Schizophr Res. 2009 May;110(1-3):1-23. doi: 10.1016/j.schres.2009.03.005. Epub 2009 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验