Shams Amin Mashayekhi, Jabbari Sepideh
Electrical Engineering Department, Engineering Faculty, University of Zanjan, Zanjan, Iran.
Biomed Eng Lett. 2024 Feb 24;14(4):663-675. doi: 10.1007/s13534-024-00360-9. eCollection 2024 Jul.
Schizophrenia (SZ) is a severe, chronic mental disorder without specific treatment. Due to the increasing prevalence of SZ in societies and the similarity of the characteristics of this disease with other mental illnesses such as bipolar disorder, most people are not aware of having it in their daily lives. Therefore, early detection of this disease will allow the sufferer to seek treatment or at least control it. Previous SZ detection studies through machine learning methods, require the extraction and selection of features before the classification process. This study attempts to develop a novel, end-to-end approach based on a 15-layers convolutional neural network (CNN) and a 16-layers CNN- long short-term memory (LSTM) to help psychiatrists automatically diagnose SZ from electroencephalogram (EEG) signals. The deep model uses CNN layers to learn the temporal properties of the signals, while LSTM layers provide the sequence learning mechanism. Also, data augmentation method based on generative adversarial networks is employed over the training set to increase the diversity of the data. Results on a large EEG dataset show the high diagnostic potential of both proposed methods, achieving remarkable accuracy of 98% and 99%. This study shows that the proposed framework is able to accurately discriminate SZ from healthy subject and is potentially useful for developing diagnostic tools for SZ disorder.
精神分裂症(SZ)是一种严重的慢性精神障碍,尚无特效治疗方法。由于精神分裂症在社会中的患病率不断上升,且该疾病的特征与双相情感障碍等其他精神疾病相似,大多数人在日常生活中并未意识到自己患有此病。因此,早期发现这种疾病将使患者能够寻求治疗或至少对其进行控制。以往通过机器学习方法进行的精神分裂症检测研究,在分类过程之前需要进行特征提取和选择。本研究试图基于一个15层卷积神经网络(CNN)和一个16层CNN-长短期记忆网络(LSTM)开发一种新颖的端到端方法,以帮助精神科医生从脑电图(EEG)信号中自动诊断精神分裂症。深度模型使用CNN层来学习信号的时间特性,而LSTM层提供序列学习机制。此外,在训练集上采用基于生成对抗网络的数据增强方法来增加数据的多样性。在一个大型脑电图数据集上的结果显示了两种提出的方法具有很高的诊断潜力,准确率分别达到了98%和99%。这项研究表明,所提出的框架能够准确地区分精神分裂症患者和健康受试者,并且对于开发精神分裂症障碍的诊断工具可能是有用的。