Li Jingen, Xu Jing, Cai Pengli, Wang Bang, Ma Yanhe, Benz J Philipp, Tian Chaoguang
Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China College of Life Sciences, Hubei University, Wuhan, China.
Appl Environ Microbiol. 2015 Jun 15;81(12):4062-70. doi: 10.1128/AEM.00165-15. Epub 2015 Apr 3.
Limited uptake is one of the bottlenecks for l-arabinose fermentation from lignocellulosic hydrolysates in engineered Saccharomyces cerevisiae. This study characterized two novel l-arabinose transporters, LAT-1 from Neurospora crassa and MtLAT-1 from Myceliophthora thermophila. Although the two proteins share high identity (about 83%), they display different substrate specificities. Sugar transport assays using the S. cerevisiae strain EBY.VW4000 indicated that LAT-1 accepts a broad substrate spectrum. In contrast, MtLAT-1 appeared much more specific for l-arabinose. Determination of the kinetic properties of both transporters revealed that the Km values of LAT-1 and MtLAT-1 for l-arabinose were 58.12 ± 4.06 mM and 29.39 ± 3.60 mM, respectively, with corresponding Vmax values of 116.7 ± 3.0 mmol/h/g dry cell weight (DCW) and 10.29 ± 0.35 mmol/h/g DCW, respectively. In addition, both transporters were found to use a proton-coupled symport mechanism and showed only partial inhibition by d-glucose during l-arabinose uptake. Moreover, LAT-1 and MtLAT-1 were expressed in the S. cerevisiae strain BSW2AP containing an l-arabinose metabolic pathway. Both recombinant strains exhibited much faster l-arabinose utilization, greater biomass accumulation, and higher ethanol production than the control strain. In conclusion, because of higher maximum velocities and reduced inhibition by d-glucose, the genes for the two characterized transporters are promising targets for improved l-arabinose utilization and fermentation in S. cerevisiae.
摄取受限是工程化酿酒酵母中利用木质纤维素水解产物发酵生产L-阿拉伯糖的瓶颈之一。本研究对两种新型L-阿拉伯糖转运蛋白进行了表征,分别是来自粗糙脉孢菌的LAT-1和嗜热毁丝霉的MtLAT-1。尽管这两种蛋白具有较高的同源性(约83%),但它们表现出不同的底物特异性。使用酿酒酵母菌株EBY.VW4000进行的糖转运分析表明,LAT-1具有广泛的底物谱。相比之下,MtLAT-1对L-阿拉伯糖的特异性要强得多。对这两种转运蛋白的动力学特性进行测定发现,LAT-1和MtLAT-1对L-阿拉伯糖的Km值分别为58.12±4.06 mM和29.39±3.60 mM,相应的Vmax值分别为116.7±3.0 mmol/h/g干细胞重量(DCW)和10.29±0.35 mmol/h/g DCW。此外,发现这两种转运蛋白均采用质子偶联同向转运机制,并且在摄取L-阿拉伯糖期间仅受到d-葡萄糖的部分抑制。此外,LAT-1和MtLAT-1在含有L-阿拉伯糖代谢途径的酿酒酵母菌株BSW2AP中表达。与对照菌株相比,这两种重组菌株均表现出更快的L-阿拉伯糖利用速度、更多的生物量积累和更高的乙醇产量。总之,由于具有更高的最大速度以及d-葡萄糖抑制作用的降低,这两种已表征转运蛋白的基因是改善酿酒酵母中L-阿拉伯糖利用和发酵的有前景的靶点。