Suppr超能文献

活动期间肌肉募集的随机建模。

Stochastic modelling of muscle recruitment during activity.

作者信息

Martelli Saulo, Calvetti Daniela, Somersalo Erkki, Viceconti Marco

机构信息

Medical Device Research Institute, School of Computer Science, Engineering and Mathematics , Flinders University , Tonsley, South Australia 5042 , Australia ; North West Academic Centre , The University of Melbourne , St Albans, Victoria 3021 , Australia.

Department of Mathematics , Applied Mathematics, and Statistics, Case Western Reserve University , Cleveland, OH 44106-7058 , USA.

出版信息

Interface Focus. 2015 Apr 6;5(2):20140094. doi: 10.1098/rsfs.2014.0094.

Abstract

Muscle forces can be selected from a space of muscle recruitment strategies that produce stable motion and variable muscle and joint forces. However, current optimization methods provide only a single muscle recruitment strategy. We modelled the spectrum of muscle recruitment strategies while walking. The equilibrium equations at the joints, muscle constraints, static optimization solutions and 15-channel electromyography (EMG) recordings for seven walking cycles were taken from earlier studies. The spectrum of muscle forces was calculated using Bayesian statistics and Markov chain Monte Carlo (MCMC) methods, whereas EMG-driven muscle forces were calculated using EMG-driven modelling. We calculated the differences between the spectrum and EMG-driven muscle force for 1-15 input EMGs, and we identified the muscle strategy that best matched the recorded EMG pattern. The best-fit strategy, static optimization solution and EMG-driven force data were compared using correlation analysis. Possible and plausible muscle forces were defined as within physiological boundaries and within EMG boundaries. Possible muscle and joint forces were calculated by constraining the muscle forces between zero and the peak muscle force. Plausible muscle forces were constrained within six selected EMG boundaries. The spectrum to EMG-driven force difference increased from 40 to 108 N for 1-15 EMG inputs. The best-fit muscle strategy better described the EMG-driven pattern (R (2) = 0.94; RMSE = 19 N) than the static optimization solution (R (2) = 0.38; RMSE = 61 N). Possible forces for 27 of 34 muscles varied between zero and the peak muscle force, inducing a peak hip force of 11.3 body-weights. Plausible muscle forces closely matched the selected EMG patterns; no effect of the EMG constraint was observed on the remaining muscle force ranges. The model can be used to study alternative muscle recruitment strategies in both physiological and pathophysiological neuromotor conditions.

摘要

肌肉力可从能产生稳定运动以及不同肌肉和关节力的肌肉募集策略空间中进行选择。然而,当前的优化方法仅提供单一的肌肉募集策略。我们对行走时的肌肉募集策略频谱进行了建模。关节处的平衡方程、肌肉约束、静态优化解以及七个行走周期的15通道肌电图(EMG)记录均取自早期研究。肌肉力频谱采用贝叶斯统计和马尔可夫链蒙特卡罗(MCMC)方法计算,而肌电图驱动的肌肉力则通过肌电图驱动建模来计算。我们计算了1至15个输入肌电图情况下频谱与肌电图驱动的肌肉力之间的差异,并确定了与记录的肌电图模式最匹配的肌肉策略。使用相关性分析比较了最佳拟合策略、静态优化解和肌电图驱动力数据。可能且合理的肌肉力定义为在生理边界和肌电图边界内。通过将肌肉力限制在零和最大肌肉力之间来计算可能的肌肉和关节力。合理的肌肉力被限制在六个选定的肌电图边界内。对于1至15个肌电图输入,频谱与肌电图驱动力的差异从40牛增加到108牛。与静态优化解(R(2)=0.38;均方根误差=61牛)相比,最佳拟合肌肉策略能更好地描述肌电图驱动模式(R(2)=0.94;均方根误差=19牛)。34块肌肉中有27块的可能力在零和最大肌肉力之间变化,导致髋部最大力达到体重的11.3倍。合理的肌肉力与选定的肌电图模式紧密匹配;未观察到肌电图约束对其余肌肉力范围的影响。该模型可用于研究生理和病理生理神经运动条件下的替代肌肉募集策略。

相似文献

1
Stochastic modelling of muscle recruitment during activity.
Interface Focus. 2015 Apr 6;5(2):20140094. doi: 10.1098/rsfs.2014.0094.
2
Computational tools for calculating alternative muscle force patterns during motion: a comparison of possible solutions.
J Biomech. 2013 Aug 9;46(12):2097-100. doi: 10.1016/j.jbiomech.2013.05.023. Epub 2013 Jun 20.
4
Muscle synergy-informed neuromusculoskeletal modelling to estimate knee contact forces in children with cerebral palsy.
Biomech Model Mechanobiol. 2024 Jun;23(3):1077-1090. doi: 10.1007/s10237-024-01825-7. Epub 2024 Mar 9.
5
EMG-Informed Neuromusculoskeletal Models Accurately Predict Knee Loading Measured Using Instrumented Implants.
IEEE Trans Biomed Eng. 2022 Jul;69(7):2268-2275. doi: 10.1109/TBME.2022.3141067. Epub 2022 Jun 17.
7
Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
Gait Posture. 2007 Jul;26(2):279-88. doi: 10.1016/j.gaitpost.2006.09.074. Epub 2006 Oct 30.
9
Static optimization underestimates antagonist muscle activity at the glenohumeral joint: A musculoskeletal modeling study.
J Biomech. 2019 Dec 3;97:109348. doi: 10.1016/j.jbiomech.2019.109348. Epub 2019 Oct 9.
10

引用本文的文献

1
Neuromuscular control: from a biomechanist's perspective.
Front Sports Act Living. 2023 Jul 5;5:1217009. doi: 10.3389/fspor.2023.1217009. eCollection 2023.
2
EMG Validation of a Subject-Specific Thoracolumbar Spine Musculoskeletal Model During Dynamic Activities in Older Adults.
Ann Biomed Eng. 2023 Oct;51(10):2313-2322. doi: 10.1007/s10439-023-03273-3. Epub 2023 Jun 23.
3
A machine learning approach to quantify individual gait responses to ankle exoskeletons.
bioRxiv. 2023 Jan 21:2023.01.20.524757. doi: 10.1101/2023.01.20.524757.
4
Using Bayesian inference to estimate plausible muscle forces in musculoskeletal models.
J Neuroeng Rehabil. 2022 Mar 23;19(1):34. doi: 10.1186/s12984-022-01008-4.
5
Anterior Cruciate Ligament Loading Increases With Pivot-Shift Mechanism During Asymmetrical Drop Vertical Jump in Female Athletes.
Orthop J Sports Med. 2021 Mar 9;9(3):2325967121989095. doi: 10.1177/2325967121989095. eCollection 2021 Mar.
7
Predicting walking response to ankle exoskeletons using data-driven models.
J R Soc Interface. 2020 Oct;17(171):20200487. doi: 10.1098/rsif.2020.0487. Epub 2020 Oct 14.
8
Modelling Human Locomotion to Inform Exercise Prescription for Osteoporosis.
Curr Osteoporos Rep. 2020 Jun;18(3):301-311. doi: 10.1007/s11914-020-00592-5.
10
Connecting the legs with a spring improves human running economy.
J Exp Biol. 2019 Sep 3;222(Pt 17):jeb202895. doi: 10.1242/jeb.202895.

本文引用的文献

1
Femoral shaft strains during daily activities: Implications for atypical femoral fractures.
Clin Biomech (Bristol). 2014 Sep;29(8):869-76. doi: 10.1016/j.clinbiomech.2014.08.001. Epub 2014 Aug 10.
2
Strain energy in the femoral neck during exercise.
J Biomech. 2014 Jun 3;47(8):1784-91. doi: 10.1016/j.jbiomech.2014.03.036. Epub 2014 Apr 3.
4
Computational tools for calculating alternative muscle force patterns during motion: a comparison of possible solutions.
J Biomech. 2013 Aug 9;46(12):2097-100. doi: 10.1016/j.jbiomech.2013.05.023. Epub 2013 Jun 20.
6
Optimal isn't good enough.
Biol Cybern. 2012 Dec;106(11-12):757-65. doi: 10.1007/s00422-012-0514-6. Epub 2012 Aug 16.
7
Muscle discretization affects the loading transferred to bones in lower-limb musculoskeletal models.
Proc Inst Mech Eng H. 2012 Feb;226(2):161-9. doi: 10.1177/0954411911425863.
8
An EMG-driven musculoskeletal model of the shoulder.
Hum Mov Sci. 2012 Apr;31(2):429-47. doi: 10.1016/j.humov.2011.08.006. Epub 2012 Jan 12.
9
Are spontaneous fractures possible? An example of clinical application for personalised, multiscale neuro-musculo-skeletal modelling.
J Biomech. 2012 Feb 2;45(3):421-6. doi: 10.1016/j.jbiomech.2011.11.048. Epub 2011 Dec 26.
10
Femoral loads during gait in a patient with massive skeletal reconstruction.
Clin Biomech (Bristol). 2012 Mar;27(3):273-80. doi: 10.1016/j.clinbiomech.2011.09.006. Epub 2011 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验