Suppr超能文献

cDREM:推断动态组合基因调控

cDREM: inferring dynamic combinatorial gene regulation.

作者信息

Wise Aaron, Bar-Joseph Ziv

机构信息

Lane Center for Computational Biology, Carnegie Mellon University , Pittsburgh, Pennsylvania.

出版信息

J Comput Biol. 2015 Apr;22(4):324-33. doi: 10.1089/cmb.2015.0010.

Abstract

Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.

摘要

基因通常由多种转录因子(TFs)进行组合调控。这种组合调控在发育过程中起着重要作用,并促进细胞对不同应激作出反应的能力。虽然已有多种方法利用基于序列和染色质免疫沉淀(ChIP)的数据集来研究组合调控,但这些方法往往忽略了组合逻辑以及与此类调控相关的动态变化。在此,我们介绍cDREM,一种用于重建组合调控动态模型的新方法。cDREM将时间序列基因表达数据与(静态)蛋白质相互作用数据整合在一起。该方法基于隐马尔可夫模型,并利用稀疏组套索法来识别组合活跃转录因子的小子集、它们的激活时间以及它们所执行的逻辑功能。我们在酵母和人类数据集上对cDREM进行了测试。利用酵母,我们表明预测的组合集与其他高通量基因组数据集一致,并且优于先前开发的用于推断组合调控的方法。将cDREM应用于研究人类对流感的反应时,我们能够识别出几个组合转录因子集,其中一些已知可调节免疫反应,而其他一些则代表重要转录因子的新组合。

相似文献

1
cDREM: inferring dynamic combinatorial gene regulation.cDREM:推断动态组合基因调控
J Comput Biol. 2015 Apr;22(4):324-33. doi: 10.1089/cmb.2015.0010.
4
Large-scale learning of combinatorial transcriptional dynamics from gene expression.从基因表达中大规模学习组合转录动态。
Bioinformatics. 2011 May 1;27(9):1277-83. doi: 10.1093/bioinformatics/btr113. Epub 2011 Mar 2.
5
Combinatorial Cis-regulation in Saccharomyces Species.酿酒酵母属中的组合式顺式调控
G3 (Bethesda). 2016 Jan 15;6(3):653-67. doi: 10.1534/g3.115.024331.

引用本文的文献

2
Recovering time-varying networks from single-cell data.从单细胞数据中恢复时变网络。
Bioinformatics. 2025 Jul 1;41(Supplement_1):i628-i636. doi: 10.1093/bioinformatics/btaf210.

本文引用的文献

1
Reconstructing dynamic microRNA-regulated interaction networks.重建动态 miRNA 调控的相互作用网络。
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15686-91. doi: 10.1073/pnas.1303236110. Epub 2013 Aug 28.
2
Identifying proteins controlling key disease signaling pathways.鉴定控制关键疾病信号通路的蛋白质。
Bioinformatics. 2013 Jul 1;29(13):i227-36. doi: 10.1093/bioinformatics/btt241.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验