Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Cell Stem Cell. 2017 Sep 7;21(3):332-348.e9. doi: 10.1016/j.stem.2017.08.002.
Directed reprogramming of human fibroblasts into fully differentiated neurons requires massive changes in epigenetic and transcriptional states. Induction of a chromatin environment permissive for acquiring neuronal subtype identity is therefore a major barrier to fate conversion. Here we show that the brain-enriched miRNAs miR-9/9 and miR-124 (miR-9/9-124) trigger reconfiguration of chromatin accessibility, DNA methylation, and mRNA expression to induce a default neuronal state. miR-9/9-124-induced neurons (miNs) are functionally excitable and uncommitted toward specific subtypes but possess open chromatin at neuronal subtype-specific loci, suggesting that such identity can be imparted by additional lineage-specific transcription factors. Consistently, we show that ISL1 and LHX3 selectively drive conversion to a highly homogeneous population of human spinal cord motor neurons. This study shows that modular synergism between miRNAs and neuronal subtype-specific transcription factors can drive lineage-specific neuronal reprogramming, providing a general platform for high-efficiency generation of distinct subtypes of human neurons.
将人成纤维细胞定向重编程为完全分化的神经元需要表观遗传和转录状态的巨大变化。因此,诱导有利于获得神经元亚型身份的染色质环境是命运转换的主要障碍。在这里,我们表明,富含脑的 miRNAs miR-9/9 和 miR-124(miR-9/9-124)引发染色质可及性、DNA 甲基化和 mRNA 表达的重新配置,以诱导默认的神经元状态。miR-9/9-124 诱导的神经元(miNs)具有功能兴奋性和对特定亚型的未承诺性,但在神经元亚型特异性基因座处具有开放的染色质,表明可以通过其他谱系特异性转录因子赋予这种身份。一致地,我们表明 ISL1 和 LHX3 选择性地驱动向高度同质的人类脊髓运动神经元群体的转化。这项研究表明,miRNAs 和神经元亚型特异性转录因子之间的模块化协同作用可以驱动谱系特异性神经元重编程,为高效生成不同类型的人类神经元提供了一个通用平台。