Ernst Felix G M, Rickert Christian, Bluschke Alexander, Betat Heike, Steinhoff Heinz-Jürgen, Mörl Mario
a Institute for Biochemistry; University of Leipzig ; Leipzig , Germany.
RNA Biol. 2015;12(4):435-46. doi: 10.1080/15476286.2015.1018502.
CCA-adding enzymes are highly specific RNA polymerases that synthesize and maintain the sequence CCA at the tRNA 3'-end. This nucleotide triplet is a prerequisite for tRNAs to be aminoacylated and to participate in protein biosynthesis. During CCA-addition, a set of highly conserved motifs in the catalytic core of these enzymes is responsible for accurate sequential nucleotide incorporation. In the nucleotide binding pocket, three amino acid residues form Watson-Crick-like base pairs to the incoming CTP and ATP. A reorientation of these templating amino acids switches the enzyme's specificity from CTP to ATP recognition. However, the mechanism underlying this essential structural rearrangement is not understood. Here, we show that motif C, whose actual function has not been identified yet, contributes to the switch in nucleotide specificity during polymerization. Biochemical characterization as well as EPR spectroscopy measurements of the human enzyme reveal that mutating the highly conserved amino acid position D139 in this motif interferes with AMP incorporation and affects interdomain movements in the enzyme. We propose a model of action, where motif C forms a flexible spring element modulating the relative orientation of the enzyme's head and body domains to accommodate the growing 3'-end of the tRNA. Furthermore, these conformational transitions initiate the rearranging of the templating amino acids to switch the specificity of the nucleotide binding pocket from CTP to ATP during CCA-synthesis.
添加CCA的酶是高度特异性的RNA聚合酶,可在tRNA 3'末端合成并维持CCA序列。这个核苷酸三联体是tRNA进行氨酰化并参与蛋白质生物合成的先决条件。在添加CCA的过程中,这些酶催化核心中的一组高度保守的基序负责精确地按顺序掺入核苷酸。在核苷酸结合口袋中,三个氨基酸残基与进入的CTP和ATP形成类似沃森-克里克的碱基对。这些模板氨基酸的重新定向会将酶的特异性从CTP识别切换为ATP识别。然而,这种重要结构重排的潜在机制尚不清楚。在这里,我们表明尚未确定其实际功能的基序C在聚合过程中有助于核苷酸特异性的切换。对人类酶的生化特性分析以及电子顺磁共振光谱测量表明,该基序中高度保守的氨基酸位置D139发生突变会干扰AMP的掺入并影响酶中的结构域间运动。我们提出了一种作用模型,其中基序C形成一个灵活的弹簧元件,调节酶的头部和主体结构域的相对方向,以适应tRNA不断增长的3'末端。此外,这些构象转变会引发模板氨基酸的重排,从而在CCA合成过程中将核苷酸结合口袋的特异性从CTP切换为ATP。