Suppr超能文献

结合晶体生成方法制备嗜冷tRNA成熟酶的衍射质量晶体。

Combining crystallogenesis methods to produce diffraction-quality crystals of a psychrophilic tRNA-maturation enzyme.

作者信息

de Wijn Raphaël, Hennig Oliver, Ernst Felix G M, Lorber Bernard, Betat Heike, Mörl Mario, Sauter Claude

机构信息

Architecture et Réactivité de l'ARN, UPR 9002, Université de Strasbourg, IBMC, CNRS, 15 Rue R. Descartes, 67084 Strasbourg, France.

Institute for Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany.

出版信息

Acta Crystallogr F Struct Biol Commun. 2018 Nov 1;74(Pt 11):747-753. doi: 10.1107/S2053230X18014590. Epub 2018 Oct 31.

Abstract

The determination of conditions for the reproducible growth of well diffracting crystals is a critical step in every biocrystallographic study. On the occasion of a new structural biology project, several advanced crystallogenesis approaches were tested in order to increase the success rate of crystallization. These methods included screening by microseed matrix screening, optimization by counter-diffusion and crystal detection by trace fluorescent labeling, and are easily accessible to any laboratory. Their combination proved to be particularly efficient in the case of the target, a 48 kDa CCA-adding enzyme from the psychrophilic bacterium Planococcus halocryophilus. A workflow summarizes the overall strategy, which led to the production of crystals that diffracted to better than 2 Å resolution and may be of general interest for a variety of applications.

摘要

确定能重复生长出衍射良好晶体的条件是每项生物晶体学研究中的关键步骤。在开展一个新的结构生物学项目时,我们测试了几种先进的晶体生成方法,以提高结晶成功率。这些方法包括微种子矩阵筛选、反向扩散优化和微量荧光标记晶体检测,任何实验室都能轻松采用。事实证明,对于来自嗜冷细菌嗜盐嗜冷球菌的48 kDa CCA添加酶这一目标蛋白而言,将这些方法结合使用特别有效。一个工作流程总结了整体策略,该策略最终产出了衍射分辨率优于2 Å的晶体,可能对各种应用具有普遍意义。

相似文献

1
Combining crystallogenesis methods to produce diffraction-quality crystals of a psychrophilic tRNA-maturation enzyme.
Acta Crystallogr F Struct Biol Commun. 2018 Nov 1;74(Pt 11):747-753. doi: 10.1107/S2053230X18014590. Epub 2018 Oct 31.
3
CCA-addition in the cold: Structural characterization of the psychrophilic CCA-adding enzyme from the permafrost bacterium .
Comput Struct Biotechnol J. 2021 Oct 21;19:5845-5855. doi: 10.1016/j.csbj.2021.10.018. eCollection 2021.
4
Measurement of Acceptor-TΨC Helix Length of tRNA for Terminal A76-Addition by A-Adding Enzyme.
Structure. 2015 May 5;23(5):830-842. doi: 10.1016/j.str.2015.03.013. Epub 2015 Apr 23.
5
Overcoming a hemihedral twinning problem in tetrahydrofolate-dependent O-demethylase crystals by the microseeding method.
Acta Crystallogr F Struct Biol Commun. 2016 Dec 1;72(Pt 12):897-902. doi: 10.1107/S2053230X16018665. Epub 2016 Nov 30.
6
From conventional crystallization to better crystals from space: a review on pilot crystallogenesis studies with aspartyl-tRNA synthetases.
Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1674-80. doi: 10.1107/s0907444902014245. Epub 2002 Sep 26.
7
tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control.
J Mol Biol. 2008 Jun 6;379(3):579-88. doi: 10.1016/j.jmb.2008.04.005. Epub 2008 Apr 8.
8
Crystallization and preliminary X-ray analysis of CTP:phosphoethanolamine cytidylyltransferase (ECT) from Saccharomyces cerevisiae.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Oct 1;62(Pt 10):1003-5. doi: 10.1107/S1744309106035561. Epub 2006 Sep 30.
9
Mechanism of 3'-Matured tRNA Discrimination from 3'-Immature tRNA by Class-II CCA-Adding Enzyme.
Structure. 2016 Jun 7;24(6):918-25. doi: 10.1016/j.str.2016.03.022. Epub 2016 Apr 28.

引用本文的文献

1
Practical courses on advanced methods in macromolecular crystallization: 20 years of history and future perspectives.
J Appl Crystallogr. 2024 Aug 30;57(Pt 5):1609-1617. doi: 10.1107/S1600576724007106. eCollection 2024 Oct 1.
2
CCA-addition in the cold: Structural characterization of the psychrophilic CCA-adding enzyme from the permafrost bacterium .
Comput Struct Biotechnol J. 2021 Oct 21;19:5845-5855. doi: 10.1016/j.csbj.2021.10.018. eCollection 2021.
4
Unusual Occurrence of Two Bona-Fide CCA-Adding Enzymes in .
Int J Mol Sci. 2020 Jul 23;21(15):5210. doi: 10.3390/ijms21155210.
5
Divergent Evolution of Eukaryotic CC- and A-Adding Enzymes.
Int J Mol Sci. 2020 Jan 10;21(2):462. doi: 10.3390/ijms21020462.
7
A Temporal Order in 5'- and 3'- Processing of Eukaryotic tRNA.
Int J Mol Sci. 2019 Mar 19;20(6):1384. doi: 10.3390/ijms20061384.

本文引用的文献

1
Cold adaptation of tRNA nucleotidyltransferases: A tradeoff in activity, stability and fidelity.
RNA Biol. 2018 Jan 2;15(1):144-155. doi: 10.1080/15476286.2017.1391445. Epub 2017 Nov 21.
2
Trace fluorescent labeling for protein crystallization.
Acta Crystallogr F Struct Biol Commun. 2015 Jul;71(Pt 7):806-14. doi: 10.1107/S2053230X15008626. Epub 2015 Jun 27.
4
Microseed matrix screening for optimization in protein crystallization: what have we learned?
Acta Crystallogr F Struct Biol Commun. 2014 Sep;70(Pt 9):1117-26. doi: 10.1107/S2053230X14015507. Epub 2014 Aug 29.
5
Some like it cold: understanding the survival strategies of psychrophiles.
EMBO Rep. 2014 May;15(5):508-17. doi: 10.1002/embr.201338170. Epub 2014 Mar 26.
6
Linking crystallographic model and data quality.
Science. 2012 May 25;336(6084):1030-3. doi: 10.1126/science.1218231.
7
Planococcus halocryophilus sp. nov., an extreme sub-zero species from high Arctic permafrost.
Int J Syst Evol Microbiol. 2012 Aug;62(Pt 8):1937-1944. doi: 10.1099/ijs.0.035782-0. Epub 2011 Oct 14.
8
One plate, two plates, a thousand plates. How crystallisation changes with large numbers of samples.
Methods. 2011 Sep;55(1):73-80. doi: 10.1016/j.ymeth.2011.04.004. Epub 2011 May 6.
9
tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization.
Cell Mol Life Sci. 2010 May;67(9):1447-63. doi: 10.1007/s00018-010-0271-4. Epub 2010 Feb 14.
10
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验