de Wijn Raphaël, Hennig Oliver, Ernst Felix G M, Lorber Bernard, Betat Heike, Mörl Mario, Sauter Claude
Architecture et Réactivité de l'ARN, UPR 9002, Université de Strasbourg, IBMC, CNRS, 15 Rue R. Descartes, 67084 Strasbourg, France.
Institute for Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany.
Acta Crystallogr F Struct Biol Commun. 2018 Nov 1;74(Pt 11):747-753. doi: 10.1107/S2053230X18014590. Epub 2018 Oct 31.
The determination of conditions for the reproducible growth of well diffracting crystals is a critical step in every biocrystallographic study. On the occasion of a new structural biology project, several advanced crystallogenesis approaches were tested in order to increase the success rate of crystallization. These methods included screening by microseed matrix screening, optimization by counter-diffusion and crystal detection by trace fluorescent labeling, and are easily accessible to any laboratory. Their combination proved to be particularly efficient in the case of the target, a 48 kDa CCA-adding enzyme from the psychrophilic bacterium Planococcus halocryophilus. A workflow summarizes the overall strategy, which led to the production of crystals that diffracted to better than 2 Å resolution and may be of general interest for a variety of applications.
确定能重复生长出衍射良好晶体的条件是每项生物晶体学研究中的关键步骤。在开展一个新的结构生物学项目时,我们测试了几种先进的晶体生成方法,以提高结晶成功率。这些方法包括微种子矩阵筛选、反向扩散优化和微量荧光标记晶体检测,任何实验室都能轻松采用。事实证明,对于来自嗜冷细菌嗜盐嗜冷球菌的48 kDa CCA添加酶这一目标蛋白而言,将这些方法结合使用特别有效。一个工作流程总结了整体策略,该策略最终产出了衍射分辨率优于2 Å的晶体,可能对各种应用具有普遍意义。