Suppr超能文献

奇异果甜蛋白晶体在三种X射线能量下的辐射衰减。

Radiation decay of thaumatin crystals at three X-ray energies.

作者信息

Liebschner Dorothee, Rosenbaum Gerold, Dauter Miroslawa, Dauter Zbigniew

机构信息

Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Japan.

Department of Biochemistry, University of Georgia and Structural Biology Center, Argonne National Laboratory, Argonne, IL 60439, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2015 Apr;71(Pt 4):772-8. doi: 10.1107/S1399004715001030. Epub 2015 Mar 26.

Abstract

Radiation damage is an unavoidable obstacle in X-ray crystallographic data collection for macromolecular structure determination, so it is important to know how much radiation a sample can endure before being degraded beyond an acceptable limit. In the literature, the threshold at which the average intensity of all recorded reflections decreases to a certain fraction of the initial value is called the `dose limit'. The first estimated D50 dose-limit value, at which the average diffracted intensity was reduced to 50%, was 20 MGy and was derived from observing sample decay in electron-diffraction experiments. A later X-ray study carried out at 100 K on ferritin protein crystals arrived at a D50 of 43 MGy, and recommended an intensity reduction of protein reflections to 70%, D70, corresponding to an absorbed dose of 30 MGy, as a more appropriate limit for macromolecular crystallography. In the macromolecular crystallography community, the rate of intensity decay with dose was then assumed to be similar for all protein crystals. A series of diffraction images of cryocooled (100 K) thaumatin crystals at identical small, 2° rotation intervals were recorded at X-ray energies of 6.33 , 12.66 and 19.00 keV. Five crystals were used for each wavelength. The decay in the average diffraction intensity to 70% of the initial value, for data extending to 2.45 Å resolution, was determined to be about 7.5 MGy at 6.33 keV and about 11 MGy at the two higher energies.

摘要

在用于确定大分子结构的X射线晶体学数据收集中,辐射损伤是一个不可避免的障碍,因此了解样品在降解到可接受极限之前能够承受多少辐射非常重要。在文献中,所有记录反射的平均强度降低到初始值的一定比例时的阈值被称为“剂量极限”。第一个估计的D50剂量极限值,即平均衍射强度降低到50%时的值,为20 MGy,是通过观察电子衍射实验中的样品衰减得出的。后来在100 K下对铁蛋白晶体进行的X射线研究得出D50为43 MGy,并建议将蛋白质反射强度降低到70%(D70),对应吸收剂量为30 MGy,作为大分子晶体学更合适的极限。在大分子晶体学界,当时假定所有蛋白质晶体的强度随剂量衰减的速率相似。在6.33 、12.66和19.00 keV的X射线能量下,以相同的小角度(2°)旋转间隔记录了一系列低温冷却(100 K)奇异果甜蛋白晶体的衍射图像。每个波长使用五块晶体。对于分辨率达到2.45 Å的数据,平均衍射强度衰减到初始值的70%时,在6.33 keV下约为7.5 MGy,在两个较高能量下约为11 MGy。

相似文献

1
Radiation decay of thaumatin crystals at three X-ray energies.
Acta Crystallogr D Biol Crystallogr. 2015 Apr;71(Pt 4):772-8. doi: 10.1107/S1399004715001030. Epub 2015 Mar 26.
2
Experimental determination of the radiation dose limit for cryocooled protein crystals.
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4912-7. doi: 10.1073/pnas.0600973103. Epub 2006 Mar 20.
3
Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4142-4151. doi: 10.1073/pnas.1821522117. Epub 2020 Feb 11.
4
Know your dose: RADDOSE.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):381-8. doi: 10.1107/S0907444910006724. Epub 2010 Mar 24.
5
Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s⁻¹.
Acta Crystallogr D Biol Crystallogr. 2012 Feb;68(Pt 2):124-33. doi: 10.1107/S0907444911052085. Epub 2012 Jan 17.
6
Beam-size effects in radiation damage in insulin and thaumatin crystals.
J Synchrotron Radiat. 2005 May;12(Pt 3):261-7. doi: 10.1107/S0909049505003298. Epub 2005 Apr 14.
8
Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.
Acta Crystallogr D Biol Crystallogr. 2010 Oct;66(Pt 10):1092-100. doi: 10.1107/S0907444910035523. Epub 2010 Sep 18.
9
Dose dependence of radiation damage for protein crystals studied at various X-ray energies.
J Synchrotron Radiat. 2007 Jan;14(Pt 1):4-10. doi: 10.1107/S0909049506049296. Epub 2006 Dec 15.
10
Comparative analysis of thaumatin crystals grown on earth and in microgravity.
Acta Crystallogr D Biol Crystallogr. 1997 Nov 1;53(Pt 6):724-33.

引用本文的文献

1
Variability in X-ray induced effects in [Rh(COD)Cl] with changing experimental parameters.
Phys Chem Chem Phys. 2022 Nov 30;24(46):28444-28456. doi: 10.1039/d2cp03928a.
2
Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination.
Front Chem. 2022 Aug 30;10:889203. doi: 10.3389/fchem.2022.889203. eCollection 2022.
3
Resolution and dose dependence of radiation damage in biomolecular systems.
IUCrJ. 2019 Sep 18;6(Pt 6):1040-1053. doi: 10.1107/S2052252519008777. eCollection 2019 Nov 1.
4
MicroED with the Falcon III direct electron detector.
IUCrJ. 2019 Aug 17;6(Pt 5):921-926. doi: 10.1107/S2052252519010583. eCollection 2019 Sep 1.
5
Low-dose X-ray structure analysis of cytochrome c oxidase utilizing high-energy X-rays.
J Synchrotron Radiat. 2019 Jul 1;26(Pt 4):912-921. doi: 10.1107/S1600577519006805. Epub 2019 Jun 14.
8
Analysis of Global and Site-Specific Radiation Damage in Cryo-EM.
Structure. 2018 May 1;26(5):759-766.e4. doi: 10.1016/j.str.2018.03.021. Epub 2018 Apr 26.
9
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams.
IUCrJ. 2017 Oct 13;4(Pt 6):785-794. doi: 10.1107/S2052252517013495. eCollection 2017 Nov 1.
10
The hidden treasure in your data: phasing with unexpected weak anomalous scatterers from routine data sets.
Acta Crystallogr F Struct Biol Commun. 2017 Apr 1;73(Pt 4):184-195. doi: 10.1107/S2053230X17002680. Epub 2017 Mar 22.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Predicting the X-ray lifetime of protein crystals.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20551-6. doi: 10.1073/pnas.1315879110. Epub 2013 Dec 2.
3
Global radiation damage: temperature dependence, time dependence and how to outrun it.
J Synchrotron Radiat. 2013 Jan;20(Pt 1):7-13. doi: 10.1107/S0909049512048303. Epub 2012 Nov 29.
4
How good can our beamlines be?
Acta Crystallogr D Biol Crystallogr. 2012 Oct;68(Pt 10):1430-6. doi: 10.1107/S0907444912034658. Epub 2012 Sep 18.
5
Energy dependence of site-specific radiation damage in protein crystals.
J Synchrotron Radiat. 2011 May;18(Pt 3):338-45. doi: 10.1107/S0909049511005504. Epub 2011 Mar 15.
6
Radiation damage in macromolecular crystallography: what is it and why should we care?
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):339-51. doi: 10.1107/S0907444910008656. Epub 2010 Mar 24.
7
Slow cooling and temperature-controlled protein crystallography.
J Struct Funct Genomics. 2010 Mar;11(1):85-9. doi: 10.1007/s10969-009-9074-y. Epub 2009 Dec 10.
8
Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE.
J Synchrotron Radiat. 2009 Mar;16(Pt 2):152-62. doi: 10.1107/S0909049508040430. Epub 2009 Feb 25.
9
Dose dependence of radiation damage for protein crystals studied at various X-ray energies.
J Synchrotron Radiat. 2007 Jan;14(Pt 1):4-10. doi: 10.1107/S0909049506049296. Epub 2006 Dec 15.
10
Radiation damage in macromolecular cryocrystallography.
Curr Opin Struct Biol. 2006 Oct;16(5):624-9. doi: 10.1016/j.sbi.2006.08.001. Epub 2006 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验