Wang Shengzheng, Tao Dacheng, Yang Jie
IEEE Trans Cybern. 2016 Mar;46(3):827-39. doi: 10.1109/TCYB.2015.2416321. Epub 2015 Apr 2.
When estimating age, human experts can provide privileged information that encodes the facial attributes of aging, such as smoothness, face shape, face acne, wrinkles, and bags under-eyes. In automatic age estimation, privileged information is unavailable to test images. To overcome this problem, we hypothesize that asymmetric information can be explored and exploited to improve the generalizability of the trained model. Using the learning using privileged information (LUPI) framework, we tested this hypothesis by carefully defining relative attributes for support vector machine (SVM+) to improve the performance of age estimation. We term this specific setting as relative attribute SVM+ (raSVM+), in which the privileged information enables separation of outliers from inliers at the training stage and effectively manipulates slack variables and age determination errors during model training, and thus guides the trained predictor toward a generalizable solution. Experimentally, the superiority of raSVM+ was confirmed by comparing it with state-of-the-art algorithms on the face and gesture recognition research network (FG-NET) and craniofacial longitudinal morphological face aging databases. raSVM+ is a promising development that improves age estimation, with the mean absolute error reaching 4.07 on FG-NET.
在估计年龄时,人类专家能够提供编码衰老面部特征的特权信息,如光滑度、脸型、面部痤疮、皱纹和眼袋。在自动年龄估计中,测试图像无法获得特权信息。为克服这一问题,我们假设可以探索和利用不对称信息来提高训练模型的泛化能力。使用利用特权信息学习(LUPI)框架,我们通过为支持向量机(SVM+)仔细定义相对属性来检验这一假设,以提高年龄估计的性能。我们将这种特定设置称为相对属性SVM+(raSVM+),其中特权信息在训练阶段能够将异常值与内点分离,并在模型训练期间有效地处理松弛变量和年龄判定误差,从而引导训练后的预测器找到一个可泛化的解决方案。通过在面部和手势识别研究网络(FG-NET)和颅面纵向形态面部衰老数据库上与现有最先进算法进行比较,实验证实了raSVM+的优越性。raSVM+是一个有前景的进展,它改进了年龄估计,在FG-NET上平均绝对误差达到4.07。