Suppr超能文献

利用深度学习进行挫伤时间推断。

Bruise dating using deep learning.

机构信息

Department of Systems Engineering, Universidad Nacional Mayor de San Marcos, Lima, Peru.

出版信息

J Forensic Sci. 2021 Jan;66(1):336-346. doi: 10.1111/1556-4029.14578. Epub 2020 Sep 29.

Abstract

The bruise dating can have important medicolegal implications in family violence and violence against women cases. However, studies show that the medical specialist has 50% accuracy in classifying a bruise by age, mainly due to the variability of the images and the color of the bruise. This research proposes a model, based on deep convolutional neural networks, for bruise dating using only images, by age ranges, ranging from 0-2 days to 17-30 days, and images of healthy skin. A 2140 experimental bruise photograph dataset was constructed, for which a data capture protocol and a preprocessing procedure are proposed. Similarly, 20 classification models were trained with the Inception V3, Resnet50, MobileNet, and MnasNet architectures, where combinations of learning transfer, cross-validation, and data augmentation were used. Numerical experiments show that classification models based on MnasNet have better results, reaching 97.00% precision and sensitivity, and 99.50% specificity, exceeding 40% precision reported in the literature. Also, it was observed that the precision of the model decreases with the age of the bruise.

摘要

擦伤鉴定在家庭暴力和针对妇女的暴力案件中具有重要的医学法律意义。然而,研究表明,医学专家在按年龄对擦伤进行分类时的准确率仅为 50%,主要是因为图像的可变性和擦伤的颜色。本研究提出了一种基于深度卷积神经网络的模型,仅使用图像,按年龄范围(0-2 天至 17-30 天)和健康皮肤的图像对擦伤进行鉴定。构建了一个包含 2140 张实验性擦伤照片的数据集,并提出了数据采集协议和预处理程序。同样,使用迁移学习、交叉验证和数据增强的组合,训练了 20 个基于 Inception V3、Resnet50、MobileNet 和 MnasNet 架构的分类模型。数值实验表明,基于 MnasNet 的分类模型具有更好的结果,达到 97.00%的精度和灵敏度,以及 99.50%的特异性,超过文献中报告的 40%的精度。此外,还观察到模型的精度随着擦伤的年龄而降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验