Suppr超能文献

用于2型糖尿病风险评估的综合基因组和体重指数分析。

Integrated genomic and BMI analysis for type 2 diabetes risk assessment.

作者信息

Lebrón-Aldea Dayanara, Dhurandhar Emily J, Pérez-Rodríguez Paulino, Klimentidis Yann C, Tiwari Hemant K, Vazquez Ana I

机构信息

Institute of Mathematics, School of Science and Technology, Universidad Metropolitana San Juan, Puerto Rico.

Department of Health Behavior, School of Public Health, University of Alabama at Birmingham Birmingham, AL, USA.

出版信息

Front Genet. 2015 Mar 17;6:75. doi: 10.3389/fgene.2015.00075. eCollection 2015.

Abstract

Type 2 Diabetes (T2D) is a chronic disease arising from the development of insulin absence or resistance within the body, and a complex interplay of environmental and genetic factors. The incidence of T2D has increased throughout the last few decades, together with the occurrence of the obesity epidemic. The consideration of variants identified by Genome Wide Association Studies (GWAS) into risk assessment models for T2D could aid in the identification of at-risk patients who could benefit from preventive medicine. In this study, we build several risk assessment models, evaluated with two different classification approaches (Logistic Regression and Neural Networks), to measure the effect of including genetic information in the prediction of T2D. We used data from to the Original and the Offspring cohorts of the Framingham Heart Study, which provides phenotypic and genetic information for 5245 subjects (4306 controls and 939 cases). Models were built by using several covariates: gender, exposure time, cohort, body mass index (BMI), and 65 SNPs associated to T2D. We fitted Logistic Regressions and Bayesian Regularized Neural Networks and then assessed their predictive ability by using a ten-fold cross validation. We found that the inclusion of genetic information into the risk assessment models increased the predictive ability by 2%, when compared to the baseline model. Furthermore, the models that included BMI at the onset of diabetes as a possible effector, gave an improvement of 6% in the area under the curve derived from the ROC analysis. The highest AUC achieved (0.75) belonged to the model that included BMI, and a genetic score based on the 65 established T2D-associated SNPs. Finally, the inclusion of SNPs and BMI raised predictive ability in all models as expected; however, results from the AUC in Neural Networks and Logistic Regression did not differ significantly in their prediction accuracy.

摘要

2型糖尿病(T2D)是一种因体内胰岛素缺乏或抵抗以及环境与遗传因素复杂相互作用而引发的慢性疾病。在过去几十年中,T2D的发病率随着肥胖症流行的出现而上升。将全基因组关联研究(GWAS)鉴定出的变异纳入T2D风险评估模型,有助于识别可能从预防医学中受益的高危患者。在本研究中,我们构建了几个风险评估模型,采用两种不同的分类方法(逻辑回归和神经网络)进行评估,以衡量纳入遗传信息对T2D预测的影响。我们使用了弗雷明汉心脏研究的原始队列和后代队列的数据,该研究提供了5245名受试者(4306名对照和939例病例)的表型和遗传信息。通过使用几个协变量构建模型:性别、暴露时间、队列、体重指数(BMI)以及与T2D相关的65个单核苷酸多态性(SNP)。我们拟合了逻辑回归和贝叶斯正则化神经网络,然后通过十折交叉验证评估它们的预测能力。我们发现,与基线模型相比,将遗传信息纳入风险评估模型可使预测能力提高2%。此外,将糖尿病发病时的BMI作为可能的效应变量纳入的模型,在ROC分析得出的曲线下面积方面提高了6%。所达到的最高曲线下面积(AUC)(0.75)属于包含BMI以及基于65个已确定的与T2D相关的SNP的遗传评分的模型。最后,正如预期的那样,在所有模型中纳入SNP和BMI都提高了预测能力;然而,神经网络和逻辑回归的AUC结果在预测准确性方面没有显著差异。

相似文献

3
Assessment of whole-genome regression for type II diabetes.2型糖尿病全基因组回归分析
PLoS One. 2015 Apr 17;10(4):e0123818. doi: 10.1371/journal.pone.0123818. eCollection 2015.

引用本文的文献

本文引用的文献

8
Type 2 Diabetes Genetics: Beyond GWAS.2型糖尿病遗传学:超越全基因组关联研究
J Diabetes Metab. 2012 Jun 23;3(198). doi: 10.4172/2155-6156.1000198.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验