Suppr超能文献

光动力疗法在克服癌症耐药性中的作用。

The role of photodynamic therapy in overcoming cancer drug resistance.

作者信息

Spring Bryan Q, Rizvi Imran, Xu Nan, Hasan Tayyaba

机构信息

Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Photochem Photobiol Sci. 2015 Aug;14(8):1476-91. doi: 10.1039/c4pp00495g. Epub 2015 Apr 9.

Abstract

Many modalities of cancer therapy induce mechanisms of treatment resistance and escape pathways during chronic treatments, including photodynamic therapy (PDT). It is conceivable that resistance induced by one treatment might be overcome by another treatment. Emerging evidence suggests that the unique mechanisms of tumor cell and microenvironment damage produced by PDT could be utilized to overcome cancer drug resistance, to mitigate the compensatory induction of survival pathways and even to re-sensitize resistant cells to standard therapies. Approaches that capture the unique features of PDT, therefore, offer promising factors for increasing the efficacy of a broad range of therapeutic modalities. Here, we highlight key preclinical findings utilizing PDT to overcome classical drug resistance or escape pathways and thus enhance the efficacy of many pharmaceuticals, possibly explaining the clinical observations of the PDT response to otherwise treatment-resistant diseases. With the development of nanotechnology, it is possible that light activation may be used not only to damage and sensitize tumors but also to enable controlled drug release to inhibit escape pathways that may lead to resistance or cell proliferation.

摘要

在长期治疗过程中,包括光动力疗法(PDT)在内的许多癌症治疗方式都会诱导产生治疗抗性机制和逃逸途径。可以想象,一种治疗诱导的抗性可能会被另一种治疗克服。新出现的证据表明,光动力疗法所产生的肿瘤细胞和微环境损伤的独特机制可用于克服癌症耐药性、减轻生存途径的代偿性诱导,甚至使耐药细胞对标准疗法重新敏感。因此,抓住光动力疗法独特特征的方法为提高多种治疗方式的疗效提供了有前景的因素。在这里,我们重点介绍利用光动力疗法克服经典耐药性或逃逸途径从而提高多种药物疗效的关键临床前研究结果,这可能解释了光动力疗法对其他耐药疾病反应的临床观察结果。随着纳米技术的发展,光激活不仅有可能用于损伤肿瘤并使其敏感化,还能实现可控药物释放,以抑制可能导致耐药性或细胞增殖的逃逸途径。

相似文献

1
The role of photodynamic therapy in overcoming cancer drug resistance.
Photochem Photobiol Sci. 2015 Aug;14(8):1476-91. doi: 10.1039/c4pp00495g. Epub 2015 Apr 9.
2
P-glycoprotein-targeted photodynamic therapy boosts cancer nanomedicine by priming tumor microenvironment.
Theranostics. 2018 Nov 29;8(22):6274-6290. doi: 10.7150/thno.29580. eCollection 2018.
3
Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer.
Cancer Lett. 2020 Nov 1;492:116-135. doi: 10.1016/j.canlet.2020.07.007. Epub 2020 Jul 18.
5
Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy.
Redox Biol. 2015 Dec;6:311-317. doi: 10.1016/j.redox.2015.07.015. Epub 2015 Jul 31.
8
Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy.
Angew Chem Int Ed Engl. 2018 Sep 3;57(36):11522-11531. doi: 10.1002/anie.201805138. Epub 2018 Aug 7.

引用本文的文献

1
NIR-responsive cisplatin nanoparticles for synergistic chemo-photothermal therapy of oral squamous cell carcinoma.
RSC Adv. 2025 May 22;15(22):17255-17265. doi: 10.1039/d5ra01910a. eCollection 2025 May 21.
3
Improved Photodynamic Therapy of Hepatocellular Carcinoma via Surface-Modified Protein Nanoparticles.
Pharmaceutics. 2025 Mar 14;17(3):370. doi: 10.3390/pharmaceutics17030370.
4
Activatable Photosensitizers: From Fundamental Principles to Advanced Designs.
Angew Chem Int Ed Engl. 2025 Apr 7;64(15):e202423348. doi: 10.1002/anie.202423348. Epub 2025 Feb 21.
5
Next-Generation Photosensitizers: Cyanine-Carborane Salts for Superior Photodynamic Therapy of Metastatic Cancer.
Angew Chem Int Ed Engl. 2025 Feb 24;64(9):e202419759. doi: 10.1002/anie.202419759. Epub 2025 Jan 31.
7
Advances in smart nanotechnology-supported photodynamic therapy for cancer.
Cell Death Discov. 2024 Nov 11;10(1):466. doi: 10.1038/s41420-024-02236-4.
9
ROS-Responsive Nanoprobes for Bimodal Imaging-Guided Cancer Targeted Combinatorial Therapy.
Int J Nanomedicine. 2024 Aug 7;19:8071-8090. doi: 10.2147/IJN.S467512. eCollection 2024.

本文引用的文献

1
The "" World in Photodynamic Therapy.
Austin J Nanomed Nanotechnol. 2014;2(3). Epub 2014 May 29.
2
Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia.
Cancer Cell. 2014 Nov 10;26(5):605-22. doi: 10.1016/j.ccell.2014.10.006.
3
Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease.
Cancer Immunol Immunother. 2015 Mar;64(3):287-97. doi: 10.1007/s00262-014-1633-9. Epub 2014 Nov 11.
6
Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma.
Cancer Cell. 2014 Jun 16;25(6):735-47. doi: 10.1016/j.ccr.2014.04.021. Epub 2014 May 22.
7
Cellular intrinsic factors involved in the resistance of squamous cell carcinoma to photodynamic therapy.
J Invest Dermatol. 2014 Sep;134(9):2428-2437. doi: 10.1038/jid.2014.178. Epub 2014 Apr 9.
8
Porphyrin-phospholipid liposomes permeabilized by near-infrared light.
Nat Commun. 2014 Apr 3;5:3546. doi: 10.1038/ncomms4546.
10
Two combined photosensitizers: a goal for more effective photodynamic therapy of cancer.
Cell Death Dis. 2014 Mar 13;5(3):e1122. doi: 10.1038/cddis.2014.77.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验