Suppr超能文献

三维打印高含量石墨烯支架在电子和生物医学中的应用。

Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications.

机构信息

†Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.

§Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States.

出版信息

ACS Nano. 2015;9(4):4636-48. doi: 10.1021/acsnano.5b01179. Epub 2015 Apr 20.

Abstract

The exceptional properties of graphene enable applications in electronics, optoelectronics, energy storage, and structural composites. Here we demonstrate a 3D printable graphene (3DG) composite consisting of majority graphene and minority polylactide-co-glycolide, a biocompatible elastomer, 3D-printed from a liquid ink. This ink can be utilized under ambient conditions via extrusion-based 3D printing to create graphene structures with features as small as 100 μm composed of as few as two layers (<300 μm thick object) or many hundreds of layers (>10 cm thick object). The resulting 3DG material is mechanically robust and flexible while retaining electrical conductivities greater than 800 S/m, an order of magnitude increase over previously reported 3D-printed carbon materials. In vitro experiments in simple growth medium, in the absence of neurogenic stimuli, reveal that 3DG supports human mesenchymal stem cell (hMSC) adhesion, viability, proliferation, and neurogenic differentiation with significant upregulation of glial and neuronal genes. This coincides with hMSCs adopting highly elongated morphologies with features similar to axons and presynaptic terminals. In vivo experiments indicate that 3DG has promising biocompatibility over the course of at least 30 days. Surgical tests using a human cadaver nerve model also illustrate that 3DG has exceptional handling characteristics and can be intraoperatively manipulated and applied to fine surgical procedures. With this unique set of properties, combined with ease of fabrication, 3DG could be applied toward the design and fabrication of a wide range of functional electronic, biological, and bioelectronic medical and nonmedical devices.

摘要

石墨烯的特殊性质使其在电子、光电、储能和结构复合材料方面具有广泛的应用。在这里,我们展示了一种由多数石墨烯和少数聚乳酸-共-羟基乙酸组成的 3D 可打印石墨烯(3DG)复合材料,聚乳酸-共-羟基乙酸是一种生物相容性弹性体,可以从液态油墨中进行 3D 打印。这种油墨可以在环境条件下通过挤出式 3D 打印进行利用,以创建具有小于 100μm(由少至两层组成,厚度小于 300μm 的物体)或数百层(厚度大于 10cm 的物体)特征的石墨烯结构。所得到的 3DG 材料具有机械强度和柔韧性,同时保留了大于 800 S/m 的电导率,这比以前报道的 3D 打印碳材料提高了一个数量级。在简单生长培养基中的体外实验中,在没有神经刺激的情况下,发现 3DG 支持人骨髓间充质干细胞(hMSC)的黏附、活力、增殖和神经分化,并显著上调神经胶质和神经元基因。这与 hMSC 采用与轴突和突触前末端相似的特征的高度伸长形态相一致。体内实验表明,3DG 在至少 30 天的时间内具有良好的生物相容性。使用人体尸体神经模型的手术测试还表明,3DG 具有出色的操作特性,可以在手术过程中进行操纵和应用于精细的手术程序。凭借这种独特的性能组合,再加上易于制造,3DG 可应用于设计和制造各种功能电子、生物和生物电子医疗和非医疗设备。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验