Suppr超能文献

利用断层CT扫描数据构建小鼠体模用于辐射剂量学研究。

Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies.

作者信息

Welch D, Harken A D, Randers-Pehrson G, Brenner D J

机构信息

Center for Radiological Research, Columbia University, 630 West 168th Street, New York, NY, USA.

出版信息

Phys Med Biol. 2015 May 7;60(9):3589-98. doi: 10.1088/0031-9155/60/9/3589. Epub 2015 Apr 10.

Abstract

We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions.

摘要

我们展示了一种用于制作解剖结构精确的小鼠模型的完整构建方法,该模型使用模拟组织、肺和骨特征的材料进行辐射剂量学研究。模型由2毫米厚的组织等效材料切片构建而成,这些切片经过精密加工,以便在适当位置留出清晰区域用于插入肺和骨等效材料。使用三维计算机断层扫描(CT)获得的图像清楚地显示了组织、肺和骨的区域,这些区域与原始小鼠CT扫描中的位置相匹配。此外,还将射线照相胶片与模型一起使用,以展示剂量映射能力。给定动物的分段CT扫描,此处介绍的构建方法可以快速轻松地进行调整,以创建任何特定小动物的模型。这些物理模型是一种有用的工具,可用于检查小鼠系统中因骨和肺区域导致密度不均匀而变得复杂的单个器官剂量和剂量学。

相似文献

1
Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies.
Phys Med Biol. 2015 May 7;60(9):3589-98. doi: 10.1088/0031-9155/60/9/3589. Epub 2015 Apr 10.
3
Development of age-specific Japanese head phantoms for dose evaluation in paediatric head CT examinations.
Radiat Prot Dosimetry. 2015 Feb;163(2):188-201. doi: 10.1093/rpd/ncu155. Epub 2014 May 12.
5
Construction of anthropomorphic phantoms for use in dosimetry studies.
J Appl Clin Med Phys. 2009 Aug 6;10(3):195-204. doi: 10.1120/jacmp.v10i3.2986.
6
Novel methods of measuring single scan dose profiles and cumulative dose in CT.
Med Phys. 2005 Jan;32(1):98-109. doi: 10.1118/1.1835571.
7
Construction and validation of a low cost paediatric pelvis phantom.
Eur J Radiol. 2018 Nov;108:84-91. doi: 10.1016/j.ejrad.2018.09.015. Epub 2018 Sep 14.
8
An open source heterogeneous 3D printed mouse phantom utilising a novel bone representative thermoplastic.
Phys Med Biol. 2020 Jun 3;65(10):10NT02. doi: 10.1088/1361-6560/ab8078.
9
Three-Dimensional Printing for Construction of Tissue-Equivalent Anthropomorphic Phantoms and Determination of Conceptus Dose.
AJR Am J Roentgenol. 2018 Dec;211(6):1283-1290. doi: 10.2214/AJR.17.19489. Epub 2018 Oct 24.

引用本文的文献

2
Preclinical Dosimetry for Small Animal Radiation Research in Proton Therapy: A Feasibility Study.
Int J Part Ther. 2023 Apr 3;10(1):13-22. doi: 10.14338/IJPT-22-00035.1. eCollection 2023 Summer.
4
Deep learning-enabled multi-organ segmentation in whole-body mouse scans.
Nat Commun. 2020 Nov 6;11(1):5626. doi: 10.1038/s41467-020-19449-7.
5
Study logistics that can impact medical countermeasure efficacy testing in mouse models of radiation injury.
Int J Radiat Biol. 2021;97(sup1):S151-S167. doi: 10.1080/09553002.2020.1820599. Epub 2020 Sep 24.
6
An open source heterogeneous 3D printed mouse phantom utilising a novel bone representative thermoplastic.
Phys Med Biol. 2020 Jun 3;65(10):10NT02. doi: 10.1088/1361-6560/ab8078.
7
Preclinical dosimetry: exploring the use of small animal phantoms.
Radiat Oncol. 2019 Jul 31;14(1):134. doi: 10.1186/s13014-019-1343-8.
9
Development of a minipig physical phantom from CT data.
J Radiat Res. 2017 Sep 1;58(5):755-760. doi: 10.1093/jrr/rrx036.
10
Quality Assessment of Stereotactic Radiosurgery of a Melanoma Brain Metastases Model Using a Mouselike Phantom and the Small Animal Radiation Research Platform.
Int J Radiat Oncol Biol Phys. 2017 Sep 1;99(1):191-201. doi: 10.1016/j.ijrobp.2017.05.016. Epub 2017 May 19.

本文引用的文献

2
Joint L1 and total variation regularization for fluorescence molecular tomography.
Phys Med Biol. 2012 Mar 21;57(6):1459-76. doi: 10.1088/0031-9155/57/6/1459. Epub 2012 Mar 5.
3
Effect of bismuth breast shielding on radiation dose and image quality in coronary CT angiography.
J Nucl Cardiol. 2012 Feb;19(1):100-8. doi: 10.1007/s12350-011-9473-x. Epub 2011 Nov 9.
5
Multichannel film dosimetry with nonuniformity correction.
Med Phys. 2011 May;38(5):2523-34. doi: 10.1118/1.3576105.
6
Influence of voxel size on specific absorbed fractions and S-values in a mouse voxel phantom.
Radiat Prot Dosimetry. 2011 Feb;143(2-4):258-63. doi: 10.1093/rpd/ncq391. Epub 2010 Nov 30.
9
Construction of anthropomorphic phantoms for use in dosimetry studies.
J Appl Clin Med Phys. 2009 Aug 6;10(3):195-204. doi: 10.1120/jacmp.v10i3.2986.
10
Empirical dual energy calibration (EDEC) for cone-beam computed tomography.
Med Phys. 2007 Sep;34(9):3630-41. doi: 10.1118/1.2769104.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验