Suppr超能文献

利用基因组重排酵母的深度测序技术,对亚硫酸盐废液耐受性的遗传基础进行解构。

Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast.

机构信息

Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada ; Current address: Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA 94704 USA.

Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada.

出版信息

Biotechnol Biofuels. 2015 Mar 31;8:53. doi: 10.1186/s13068-015-0241-z. eCollection 2015.

Abstract

BACKGROUND

Identifying the genetic basis of complex microbial phenotypes is currently a major barrier to our understanding of multigenic traits and our ability to rationally design biocatalysts with highly specific attributes for the biotechnology industry. Here, we demonstrate that strain evolution by meiotic recombination-based genome shuffling coupled with deep sequencing can be used to deconstruct complex phenotypes and explore the nature of multigenic traits, while providing concrete targets for strain development.

RESULTS

We determined genomic variations found within Saccharomyces cerevisiae previously evolved in our laboratory by genome shuffling for tolerance to spent sulphite liquor. The representation of these variations was backtracked through parental mutant pools and cross-referenced with RNA-seq gene expression analysis to elucidate the importance of single mutations and key biological processes that play a role in our trait of interest. Our findings pinpoint novel genes and biological determinants of lignocellulosic hydrolysate inhibitor tolerance in yeast. These include the following: protein homeostasis constituents, including Ubp7p and Art5p, related to ubiquitin-mediated proteolysis; stress response transcriptional repressor, Nrg1p; and NADPH-dependent glutamate dehydrogenase, Gdh1p. Reverse engineering a prominent mutation in ubiquitin-specific protease gene UBP7 in a laboratory S. cerevisiae strain effectively increased spent sulphite liquor tolerance.

CONCLUSIONS

This study advances understanding of yeast tolerance mechanisms to inhibitory substrates and biocatalyst design for a biomass-to-biofuel/biochemical industry, while providing insights into the process of mutation accumulation that occurs during genome shuffling.

摘要

背景

目前,识别复杂微生物表型的遗传基础是我们理解多基因性状和我们为生物技术产业设计具有高度特异性属性的生物催化剂的能力的主要障碍。在这里,我们证明了基于有性重组的基因组洗牌与深度测序相结合的菌株进化可用于解构复杂表型并探索多基因性状的本质,同时为菌株开发提供具体目标。

结果

我们确定了先前通过实验室中进行的耐受废亚硫酸盐液的有性重组基因组洗牌进化的酿酒酵母中的基因组变异。通过对亲本突变体池进行回溯并与 RNA-seq 基因表达分析进行交叉引用,确定了这些变异的代表性,以阐明单突变的重要性以及在我们感兴趣的性状中起作用的关键生物学过程。我们的研究结果确定了酵母木质纤维素水解物抑制剂耐受性的新基因和生物学决定因素。其中包括:与泛素介导的蛋白水解有关的蛋白质稳态成分,包括 Ubp7p 和 Art5p;应激反应转录阻遏物 Nrg1p;以及 NADPH 依赖性谷氨酸脱氢酶 Gdh1p。在实验室酿酒酵母菌株中对泛素特异性蛋白酶基因 UBP7 的显著突变进行反向工程,有效地提高了废亚硫酸盐液的耐受性。

结论

这项研究推进了对酵母耐受抑制性底物的机制的理解,并为生物质到生物燃料/生物化学工业的生物催化剂设计提供了思路,同时为基因组洗牌过程中发生的突变积累过程提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37b9/4393574/992d13d058a1/13068_2015_241_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验