Suppr超能文献

基于图的最小生成树高效准确地构建遗传连锁图谱。

Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph.

作者信息

Wu Yonghui, Bhat Prasanna R, Close Timothy J, Lonardi Stefano

机构信息

Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA.

出版信息

PLoS Genet. 2008 Oct;4(10):e1000212. doi: 10.1371/journal.pgen.1000212. Epub 2008 Oct 10.

Abstract

Genetic linkage maps are cornerstones of a wide spectrum of biotechnology applications, including map-assisted breeding, association genetics, and map-assisted gene cloning. During the past several years, the adoption of high-throughput genotyping technologies has been paralleled by a substantial increase in the density and diversity of genetic markers. New genetic mapping algorithms are needed in order to efficiently process these large datasets and accurately construct high-density genetic maps. In this paper, we introduce a novel algorithm to order markers on a genetic linkage map. Our method is based on a simple yet fundamental mathematical property that we prove under rather general assumptions. The validity of this property allows one to determine efficiently the correct order of markers by computing the minimum spanning tree of an associated graph. Our empirical studies obtained on genotyping data for three mapping populations of barley (Hordeum vulgare), as well as extensive simulations on synthetic data, show that our algorithm consistently outperforms the best available methods in the literature, particularly when the input data are noisy or incomplete. The software implementing our algorithm is available in the public domain as a web tool under the name MSTmap.

摘要

遗传连锁图谱是众多生物技术应用的基石,包括图谱辅助育种、关联遗传学和图谱辅助基因克隆。在过去几年中,高通量基因分型技术的采用伴随着遗传标记的密度和多样性大幅增加。为了有效处理这些大型数据集并准确构建高密度遗传图谱,需要新的遗传作图算法。在本文中,我们介绍了一种在遗传连锁图谱上对标记进行排序的新算法。我们的方法基于一个简单而基本的数学性质,我们在相当一般的假设下证明了这一性质。这一性质的有效性使人们能够通过计算相关图的最小生成树来有效地确定标记的正确顺序。我们对大麦(Hordeum vulgare)三个作图群体的基因分型数据进行的实证研究,以及对合成数据的广泛模拟表明,我们的算法始终优于文献中现有的最佳方法,特别是当输入数据有噪声或不完整时。实现我们算法的软件以MSTmap的名称作为网络工具在公共领域可用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58cd/2556103/9c59d854218b/pgen.1000212.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验