Suppr超能文献

对HT-SELEX中突变图谱的大规模分析可改善适体发现。

Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery.

作者信息

Hoinka Jan, Berezhnoy Alexey, Dao Phuong, Sauna Zuben E, Gilboa Eli, Przytycka Teresa M

机构信息

National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA.

Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA.

出版信息

Nucleic Acids Res. 2015 Jul 13;43(12):5699-707. doi: 10.1093/nar/gkv308. Epub 2015 Apr 13.

Abstract

High-Throughput (HT) SELEX combines SELEX (Systematic Evolution of Ligands by EXponential Enrichment), a method for aptamer discovery, with massively parallel sequencing technologies. This emerging technology provides data for a global analysis of the selection process and for simultaneous discovery of a large number of candidates but currently lacks dedicated computational approaches for their analysis. To close this gap, we developed novel in-silico methods to analyze HT-SELEX data and utilized them to study the emergence of polymerase errors during HT-SELEX. Rather than considering these errors as a nuisance, we demonstrated their utility for guiding aptamer discovery. Our approach builds on two main advancements in aptamer analysis: AptaMut-a novel technique allowing for the identification of polymerase errors conferring an improved binding affinity relative to the 'parent' sequence and AptaCluster-an aptamer clustering algorithm which is to our best knowledge, the only currently available tool capable of efficiently clustering entire aptamer pools. We applied these methods to an HT-SELEX experiment developing aptamers against Interleukin 10 receptor alpha chain (IL-10RA) and experimentally confirmed our predictions thus validating our computational methods.

摘要

高通量(HT)SELEX将指数富集配体系统进化技术(SELEX,一种适体发现方法)与大规模平行测序技术相结合。这项新兴技术为筛选过程的全局分析和大量候选适体的同时发现提供了数据,但目前缺乏专门用于分析这些数据的计算方法。为了填补这一空白,我们开发了新的计算机模拟方法来分析HT-SELEX数据,并利用这些方法研究HT-SELEX过程中聚合酶错误的出现情况。我们没有将这些错误视为麻烦,而是证明了它们在指导适体发现方面的作用。我们的方法基于适体分析的两个主要进展:AptaMut——一种新技术,能够识别相对于“亲本”序列具有更高结合亲和力的聚合酶错误;以及AptaCluster——一种适体聚类算法,据我们所知,它是目前唯一能够有效聚类整个适体库的工具。我们将这些方法应用于一项针对白细胞介素10受体α链(IL-10RA)开发适体的HT-SELEX实验,并通过实验证实了我们的预测,从而验证了我们的计算方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/416a/4499121/96c50b87d57b/gkv308fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验