Suppr超能文献

针对埃博拉病毒 VP35 的 RNA 适体的开发。

Development of RNA aptamers targeting Ebola virus VP35.

机构信息

Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, Missouri 63110, United States.

出版信息

Biochemistry. 2013 Nov 26;52(47):8406-19. doi: 10.1021/bi400704d. Epub 2013 Nov 14.

Abstract

Viral protein 35 (VP35), encoded by filoviruses, is a multifunctional dsRNA binding protein that plays important roles in viral replication, innate immune evasion, and pathogenesis. The multifunctional nature of these proteins also presents opportunities to develop countermeasures that target distinct functional regions. However, functional validation and the establishment of therapeutic approaches toward such multifunctional proteins, particularly for nonenzymatic targets, are often challenging. Our previous work on filoviral VP35 proteins defined conserved basic residues located within its C-terminal dsRNA binding interferon (IFN) inhibitory domain (IID) as important for VP35 mediated IFN antagonism and viral polymerase cofactor functions. In the current study, we used a combination of structural and functional data to determine regions of Ebola virus (EBOV) VP35 (eVP35) to target for aptamer selection using SELEX. Select aptamers, representing, two distinct classes, were further characterized based on their interaction properties to eVP35 IID. These results revealed that these aptamers bind to distinct regions of eVP35 IID with high affinity (10-50 nM) and specificity. These aptamers can compete with dsRNA for binding to eVP35 and disrupt the eVP35-nucleoprotein (NP) interaction. Consistent with the ability to antagonize the eVP35-NP interaction, select aptamers can inhibit the function of the EBOV polymerase complex reconstituted by the expression of select viral proteins. Taken together, our results support the identification of two aptamers that bind filoviral VP35 proteins with high affinity and specificity and have the capacity to potentially function as filoviral VP35 protein inhibitors.

摘要

病毒蛋白 35(VP35),由丝状病毒编码,是一种多功能的 dsRNA 结合蛋白,在病毒复制、先天免疫逃避和发病机制中发挥重要作用。这些蛋白质的多功能性质也为开发针对不同功能区域的对策提供了机会。然而,针对这些多功能蛋白质(特别是非酶靶标)进行功能验证和建立治疗方法通常具有挑战性。我们之前关于丝状病毒 VP35 蛋白的工作确定了位于其 C 端 dsRNA 结合干扰素(IFN)抑制域(IID)内的保守碱性残基对 VP35 介导的 IFN 拮抗和病毒聚合酶辅助因子功能很重要。在当前的研究中,我们使用结构和功能数据的组合来确定埃博拉病毒(EBOV)VP35(eVP35)的区域,以使用 SELEX 进行适体选择。选择的适体代表两个不同的类别,进一步根据它们与 eVP35 IID 的相互作用特性进行了表征。这些结果表明,这些适体以高亲和力(10-50 nM)和特异性结合到 eVP35 IID 的不同区域。这些适体可以与 dsRNA 竞争结合 eVP35 并破坏 eVP35-核蛋白(NP)相互作用。与拮抗 eVP35-NP 相互作用的能力一致,选择的适体可以抑制通过表达选择的病毒蛋白重新构成的 EBOV 聚合酶复合物的功能。总之,我们的结果支持鉴定两种与丝状病毒 VP35 蛋白具有高亲和力和特异性的适体,并且有可能作为丝状病毒 VP35 蛋白抑制剂发挥作用。

相似文献

1
Development of RNA aptamers targeting Ebola virus VP35.
Biochemistry. 2013 Nov 26;52(47):8406-19. doi: 10.1021/bi400704d. Epub 2013 Nov 14.
2
Basic residues within the ebolavirus VP35 protein are required for its viral polymerase cofactor function.
J Virol. 2010 Oct;84(20):10581-91. doi: 10.1128/JVI.00925-10. Epub 2010 Aug 4.
3
In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity.
J Mol Biol. 2014 May 15;426(10):2045-58. doi: 10.1016/j.jmb.2014.01.010. Epub 2014 Feb 1.
4
Identification of Myricetin as an Ebola Virus VP35-Double-Stranded RNA Interaction Inhibitor through a Novel Fluorescence-Based Assay.
Biochemistry. 2018 Nov 6;57(44):6367-6378. doi: 10.1021/acs.biochem.8b00892. Epub 2018 Oct 22.
5
Cynarin blocks Ebola virus replication by counteracting VP35 inhibition of interferon-beta production.
Antiviral Res. 2022 Feb;198:105251. doi: 10.1016/j.antiviral.2022.105251. Epub 2022 Jan 20.
6
Structure of the Ebola VP35 interferon inhibitory domain.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):411-6. doi: 10.1073/pnas.0807854106. Epub 2009 Jan 2.
7
Structural basis for Marburg virus VP35-mediated immune evasion mechanisms.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20661-6. doi: 10.1073/pnas.1213559109. Epub 2012 Nov 26.
8
Exploration micromechanism of VP35 IID interaction and recognition dsRNA: A molecular dynamics simulation.
Proteins. 2017 Jun;85(6):1008-1023. doi: 10.1002/prot.25269. Epub 2017 Mar 7.
9
Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome.
Cell Host Microbe. 2013 Jul 17;14(1):74-84. doi: 10.1016/j.chom.2013.06.010.

引用本文的文献

1
Oligonucleotide-Based Modulation of Macrophage Polarization: Emerging Strategies in Immunotherapy.
Immun Inflamm Dis. 2025 May;13(5):e70200. doi: 10.1002/iid3.70200.
2
Aptamers: precision tools for diagnosing and treating infectious diseases.
Front Cell Infect Microbiol. 2024 Sep 25;14:1402932. doi: 10.3389/fcimb.2024.1402932. eCollection 2024.
3
RNA-Based Vaccines and Therapeutics Against Intracellular Pathogens.
Methods Mol Biol. 2024;2813:321-370. doi: 10.1007/978-1-0716-3890-3_21.
4
Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19.
Trends Biotechnol. 2023 Apr;41(4):528-544. doi: 10.1016/j.tibtech.2022.07.012. Epub 2022 Aug 1.
5
Applications in Which Aptamers Are Needed or Wanted in Diagnostics and Therapeutics.
Pharmaceuticals (Basel). 2022 Jun 1;15(6):693. doi: 10.3390/ph15060693.
6
Biodiagnostics in an era of global pandemics-From biosensing materials to data management.
View (Beijing). 2022 Mar;3(2):20200164. doi: 10.1002/VIW.20200164. Epub 2021 Jun 18.
7
Structural and Functional Aspects of Ebola Virus Proteins.
Pathogens. 2021 Oct 15;10(10):1330. doi: 10.3390/pathogens10101330.
8
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy.
Pharmaceutics. 2021 Oct 9;13(10):1646. doi: 10.3390/pharmaceutics13101646.
9
Aptamers for Anti-Viral Therapeutics and Diagnostics.
Int J Mol Sci. 2021 Apr 17;22(8):4168. doi: 10.3390/ijms22084168.
10
AptaNet as a deep learning approach for aptamer-protein interaction prediction.
Sci Rep. 2021 Mar 16;11(1):6074. doi: 10.1038/s41598-021-85629-0.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome.
Cell Host Microbe. 2013 Jul 17;14(1):74-84. doi: 10.1016/j.chom.2013.06.010.
3
Structural basis for Marburg virus VP35-mediated immune evasion mechanisms.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20661-6. doi: 10.1073/pnas.1213559109. Epub 2012 Nov 26.
4
Ebolavirus vaccines for humans and apes.
Curr Opin Virol. 2012 Jun;2(3):324-9. doi: 10.1016/j.coviro.2012.04.003. Epub 2012 May 4.
5
RNA aptamers: a review of recent trends and applications.
Adv Biochem Eng Biotechnol. 2013;131:153-69. doi: 10.1007/10_2012_136.
6
Aptamers in virology: recent advances and challenges.
Front Microbiol. 2012 Feb 8;3:29. doi: 10.3389/fmicb.2012.00029. eCollection 2012.
7
Discovery of an ebolavirus-like filovirus in europe.
PLoS Pathog. 2011 Oct;7(10):e1002304. doi: 10.1371/journal.ppat.1002304. Epub 2011 Oct 20.
8
Advances in virus-like particle vaccines for filoviruses.
J Infect Dis. 2011 Nov;204 Suppl 3(Suppl 3):S1053-9. doi: 10.1093/infdis/jir346.
10
Ebolavirus VP35 is a multifunctional virulence factor.
Virulence. 2010 Nov-Dec;1(6):526-31. doi: 10.4161/viru.1.6.12984. Epub 2010 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验