†Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany.
§Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Acc Chem Res. 2015 May 19;48(5):1296-307. doi: 10.1021/acs.accounts.5b00075. Epub 2015 Apr 14.
Synthetic polymer chemistry has undergone two major developments in the last two decades. About 20 years ago, reversible-deactivation radical polymerization processes started to give access to a wide range of polymeric architectures made from an almost infinite reservoir of functional building blocks. A few years later, the concept of click chemistry revolutionized the way polymer chemists approached synthetic routes. Among the few reactions that could qualify as click, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) initially stood out. Soon, many old and new reactions, including cycloadditions, would further enrich the synthetic macromolecular chemistry toolbox. Whether click or not, cycloadditions are in any case powerful tools for designing polymeric materials in a modular fashion, with a high level of functionality and, sometimes, responsiveness. Here, we wish to describe cycloaddition methodologies that have been reported in the last 10 years in the context of macromolecular engineering, with a focus on those developed in our laboratories. The overarching structure of this Account is based on the three most commonly encountered cycloaddition subclasses in organic and macromolecular chemistry: 1,3-dipolar cycloadditions, (hetero-)Diels-Alder cycloadditions ((H)DAC), and [2+2] cycloadditions. Our goal is to briefly describe the relevant reaction conditions, the advantages and disadvantages, and the realized polymer applications. Furthermore, the orthogonality of most of these reactions is highlighted because it has proven highly beneficial for generating unique, multifunctional polymers in a one-pot reaction. The overview on 1,3-dipolar cycloadditions is mostly centered on the application of CuAAC as the most travelled route, by far. Besides illustrating the capacity of CuAAC to generate complex polymeric architectures, alternative 1,3-dipolar cycloadditions operating without the need for a catalyst are described. In the area of (H)DA cycloadditions, beyond the popular maleimide/furan couple, we present chemistries based on more reactive species, such as cyclopentadienyl or thiocarbonylthio moieties, particularly stressing the reversibility of these systems. In these two greater families, as well as in the last section on [2+2] cycloadditions, we highlight phototriggered chemistries as a powerful tool for spatially and temporally controlled materials synthesis. Clearly, cycloaddition chemistry already has and will continue to transform the field of polymer chemistry in the years to come. Applying this chemistry enables better control over polymer composition, the development of more complicated polymer architectures, the simplification of polymer library production, and the discovery of novel applications for all of these new polymers.
在过去的二十年中,合成聚合物化学经历了两个主要的发展。大约 20 年前,可逆失活自由基聚合反应开始使人们能够从几乎无限的功能构建块库中获得广泛的聚合物结构。几年后,点击化学的概念彻底改变了聚合物化学家处理合成路线的方式。在为数不多的可以被称为点击的反应中,铜催化的叠氮-炔环加成(CuAAC)最初脱颖而出。很快,许多旧的和新的反应,包括环加成反应,将进一步丰富合成高分子化学工具箱。无论是点击还是不点击,环加成反应都是以模块化方式设计具有高功能和有时响应性的聚合物材料的强大工具。在这里,我们希望描述过去 10 年在高分子工程背景下报道的环加成方法,重点介绍我们实验室开发的方法。本账户的总体结构基于有机和高分子化学中最常见的三种环加成子类:1,3-偶极环加成、(杂)Diels-Alder 环加成((H)DAC)和 [2+2] 环加成。我们的目标是简要描述相关的反应条件、优缺点以及实现的聚合物应用。此外,这些反应的大多数正交性都得到了强调,因为它在一锅反应中生成独特的多功能聚合物方面具有很高的益处。1,3-偶极环加成的概述主要集中在 CuAAC 的应用上,这是迄今为止最常用的途径。除了说明 CuAAC 生成复杂聚合物结构的能力外,还描述了不需要催化剂即可进行的替代 1,3-偶极环加成反应。在(H)DA 环加成领域,除了流行的马来酰亚胺/呋喃偶联外,我们还介绍了基于更具反应性的物种的化学,例如环戊二烯基或硫羰基硫基,特别强调了这些系统的可逆性。在这两个更大的家族以及最后一节关于 [2+2] 环加成中,我们强调光触发化学作为一种用于空间和时间控制材料合成的强大工具。显然,环加成化学已经并将在未来几年继续改变聚合物化学领域。应用这种化学可以更好地控制聚合物组成、开发更复杂的聚合物结构、简化聚合物文库的生产以及发现所有这些新型聚合物的新应用。