Valverde-Tercedor C, Montalbán-López M, Perez-Gonzalez T, Sanchez-Quesada M S, Prozorov T, Pineda-Molina E, Fernandez-Vivas M A, Rodriguez-Navarro A B, Trubitsyn D, Bazylinski Dennis A, Jimenez-Lopez C
Departamento de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain,
Appl Microbiol Biotechnol. 2015 Jun;99(12):5109-21. doi: 10.1007/s00253-014-6326-y. Epub 2015 Jan 21.
Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10-60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (30-40 nm) compared to those of the control (20-30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.
趋磁细菌是一类多样的原核生物,它们具有生物矿化磁小体的独特能力,磁小体是细胞内由膜包裹的磁铁矿(Fe3O4)或硫复铁矿(Fe3S4)晶体。磁小体生物矿化由多种特定蛋白质介导,其中许多定位于磁小体膜上,因此受到严格的基因控制。多项研究部分阐明了一些与磁小体相关的蛋白质在控制磁小体磁铁矿晶体大小方面的作用。然而,磁小体膜中含量最丰富的蛋白质之一MamC的作用仍不清楚。在本研究中,在25℃下,于自由漂移实验中,在存在来自海洋趋磁细菌海洋磁球菌菌株MC-1的不同浓度的铁结合重组蛋白MamC和MamCnts(不含其第一个跨膜区段的MamC)以及三种商业蛋白质[α-乳白蛋白(α-Lac)、肌红蛋白(Myo)和溶菌酶(Lyz)]的情况下,无机合成了磁铁矿纳米颗粒。虽然在存在商业蛋白质的情况下未观察到对形成的磁铁矿晶体大小有影响,但在存在浓度为10 - 60μg/mL的MamC和MamCnts的情况下进行仿生合成,与对照(约20 - 30nm;无蛋白质生长的磁铁矿晶体)相比,产生了更大且发育更良好的磁铁矿晶体(约30 - 40nm)。我们的结果表明,MamC在控制磁铁矿晶体大小方面起重要作用,可用于磁铁矿纳米晶体的仿生合成。