Suppr超能文献

癌症进化中可操作驱动事件的克隆状态及突变过程的时间安排。

Clonal status of actionable driver events and the timing of mutational processes in cancer evolution.

作者信息

McGranahan Nicholas, Favero Francesco, de Bruin Elza C, Birkbak Nicolai Juul, Szallasi Zoltan, Swanton Charles

机构信息

Cancer Research UK London Research Institute, London WC2A 3LY, UK. Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London WC1E 6BT, UK.

Cancer System Biology, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby 2800, Denmark.

出版信息

Sci Transl Med. 2015 Apr 15;7(283):283ra54. doi: 10.1126/scitranslmed.aaa1408.

Abstract

Deciphering whether actionable driver mutations are found in all or a subset of tumor cells will likely be required to improve drug development and precision medicine strategies. We analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions. Although mutations in known driver genes typically occurred early in cancer evolution, we also identified later subclonal "actionable" mutations, including BRAF (V600E), IDH1 (R132H), PIK3CA (E545K), EGFR (L858R), and KRAS (G12D), which may compromise the efficacy of targeted therapy approaches. More than 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K (phosphatidylinositol 3-kinase)-AKT-mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal. Mutations in the RAS-MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTOR signaling. Analysis of late mutations revealed a link between APOBEC-mediated mutagenesis and the acquisition of subclonal driver mutations and uncovered putative cancer genes involved in subclonal expansions, including CTNNA2 and ATXN1. Our results provide a pan-cancer census of driver events within the context of intratumor heterogeneity and reveal patterns of tumor evolution across cancers. The frequent presence of subclonal driver mutations suggests the need to stratify targeted therapy response according to the proportion of tumor cells in which the driver is identified.

摘要

为了改进药物研发和精准医疗策略,可能需要确定在所有肿瘤细胞还是部分肿瘤细胞中发现了可靶向治疗的驱动基因突变。我们分析了九种癌症类型,以确定驱动事件的亚克隆频率,确定癌症进化过程中的突变时间,并识别亚克隆扩增的驱动因素。虽然已知驱动基因的突变通常发生在癌症进化的早期,但我们也发现了后期的亚克隆“可靶向治疗”突变,包括BRAF(V600E)、IDH1(R132H)、PIK3CA(E545K)、EGFR(L858R)和KRAS(G12D),这些突变可能会影响靶向治疗方法的疗效。胶质母细胞瘤中超过20%的IDH1突变,以及所有肿瘤类型中PI3K(磷脂酰肌醇3激酶)-AKT-mTOR(雷帕霉素哺乳动物靶蛋白)信号轴上15%的基因突变是亚克隆性的。与PI3K-AKT-mTOR信号相关基因的突变相比,RAS-MEK(丝裂原活化蛋白激酶激酶)信号轴上的突变更不容易是亚克隆性的。对晚期突变的分析揭示了APOBEC介导的诱变与亚克隆驱动基因突变的获得之间的联系,并发现了参与亚克隆扩增的推定癌症基因,包括CTNNA2和ATXN1。我们的结果提供了肿瘤内异质性背景下驱动事件的泛癌普查,并揭示了不同癌症的肿瘤进化模式。亚克隆驱动基因突变的频繁出现表明,需要根据鉴定出驱动基因的肿瘤细胞比例对靶向治疗反应进行分层。

相似文献

1
Clonal status of actionable driver events and the timing of mutational processes in cancer evolution.
Sci Transl Med. 2015 Apr 15;7(283):283ra54. doi: 10.1126/scitranslmed.aaa1408.
2
Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes.
Cell. 2021 Apr 15;184(8):2239-2254.e39. doi: 10.1016/j.cell.2021.03.009. Epub 2021 Apr 7.
4
A system for detecting high impact-low frequency mutations in primary tumors and metastases.
Oncogene. 2018 Jan 11;37(2):185-196. doi: 10.1038/onc.2017.322. Epub 2017 Sep 11.
5
Analysis of 7,815 cancer exomes reveals associations between mutational processes and somatic driver mutations.
PLoS Genet. 2018 Nov 9;14(11):e1007779. doi: 10.1371/journal.pgen.1007779. eCollection 2018 Nov.
6
IDH1 and IDH2 mutations in lung adenocarcinomas: Evidences of subclonal evolution.
Cancer Med. 2020 Jun;9(12):4386-4394. doi: 10.1002/cam4.3058. Epub 2020 Apr 25.
7
RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies.
Acta Biochim Biophys Sin (Shanghai). 2016 Jan;48(1):27-38. doi: 10.1093/abbs/gmv090. Epub 2015 Sep 7.
9
PIK3CA mutations in advanced cancers: characteristics and outcomes.
Oncotarget. 2012 Dec;3(12):1566-75. doi: 10.18632/oncotarget.716.

引用本文的文献

1
The role of apoptosis and its potential as a therapeutic target in inflammatory bowel disease associated with colorectal cancer.
Am J Transl Res. 2025 Jul 25;17(7):5718-5745. doi: 10.62347/NCFF5626. eCollection 2025.
2
Genomic characterization of tumor mutational burden-high breast carcinomas.
NPJ Precis Oncol. 2025 Aug 8;9(1):277. doi: 10.1038/s41698-025-01045-x.
5
Cancer gene identification from RNA variant allelic frequencies using RVdriver.
Genome Biol. 2025 Jun 13;26(1):165. doi: 10.1186/s13059-025-03557-y.

本文引用的文献

1
Biological and therapeutic impact of intratumor heterogeneity in cancer evolution.
Cancer Cell. 2015 Jan 12;27(1):15-26. doi: 10.1016/j.ccell.2014.12.001.
2
Spatial and temporal diversity in genomic instability processes defines lung cancer evolution.
Science. 2014 Oct 10;346(6206):251-6. doi: 10.1126/science.1253462.
5
Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity.
Nature. 2014 Oct 2;514(7520):54-8. doi: 10.1038/nature13556. Epub 2014 Jul 30.
6
Tracking genomic cancer evolution for precision medicine: the lung TRACERx study.
PLoS Biol. 2014 Jul 8;12(7):e1001906. doi: 10.1371/journal.pbio.1001906. eCollection 2014 Jul.
7
Mechanisms underlying mutational signatures in human cancers.
Nat Rev Genet. 2014 Sep;15(9):585-98. doi: 10.1038/nrg3729. Epub 2014 Jul 1.
9
Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing.
Nat Genet. 2014 Mar;46(3):225-233. doi: 10.1038/ng.2891. Epub 2014 Feb 2.
10
Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy.
Cancer Cell. 2014 Jan 13;25(1):91-101. doi: 10.1016/j.ccr.2013.12.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验