Tyler William A, Medalla Maria, Guillamon-Vivancos Teresa, Luebke Jennifer I, Haydar Tarik F
Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118.
Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118
J Neurosci. 2015 Apr 15;35(15):6142-52. doi: 10.1523/JNEUROSCI.0335-15.2015.
Several neural precursor populations contemporaneously generate neurons in the developing neocortex. Specifically, radial glial stem cells of the dorsal telencephalon divide asymmetrically to produce excitatory neurons, but also indirectly to produce neurons via three types of intermediate progenitor cells. Why so many precursor types are needed to produce neurons has not been established; whether different intermediate progenitor cells merely expand the output of radial glia or instead generate distinct types of neurons is unknown. Here we use a novel genetic fate mapping technique to simultaneously track multiple precursor streams in the developing mouse brain and show that layer 2 and 3 pyramidal neurons exhibit distinctive electrophysiological and structural properties depending upon their precursor cell type of origin. These data indicate that individual precursor subclasses synchronously produce functionally different neurons, even within the same lamina, and identify a primary mechanism leading to cortical neuronal diversity.
在发育中的新皮层中,有几种神经前体细胞群同时产生神经元。具体而言,端脑背侧的放射状胶质干细胞不对称分裂产生兴奋性神经元,也通过三种类型的中间祖细胞间接产生神经元。目前尚不清楚为何需要如此多的前体细胞类型来产生神经元;不同的中间祖细胞是仅仅扩大了放射状胶质细胞的输出,还是产生了不同类型的神经元,目前还不清楚。在这里,我们使用一种新型的遗传命运图谱技术,同时追踪发育中小鼠大脑中的多个前体细胞流,并表明2层和3层锥体神经元根据其起源的前体细胞类型表现出独特的电生理和结构特性。这些数据表明,即使在同一层内,单个前体细胞亚类也会同步产生功能不同的神经元,并确定了导致皮质神经元多样性的主要机制。