Chokhawala Harshal A, Roche Christine M, Kim Tae-Wan, Atreya Meera E, Vegesna Neeraja, Dana Craig M, Blanch Harvey W, Clark Douglas S
Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
BMC Biotechnol. 2015 Feb 21;15(1):11. doi: 10.1186/s12896-015-0118-z.
Trichoderma reesei is a key cellulase source for economically saccharifying cellulosic biomass for the production of biofuels. Lignocellulose hydrolysis at temperatures above the optimum temperature of T. reesei cellulases (~50°C) could provide many significant advantages, including reduced viscosity at high-solids loadings, lower risk of microbial contamination during saccharification, greater compatibility with high-temperature biomass pretreatment, and faster rates of hydrolysis. These potential advantages motivate efforts to engineer T. reesei cellulases that can hydrolyze lignocellulose at temperatures ranging from 60-70°C.
A B-factor guided approach for improving thermostability was used to engineer variants of endoglucanase I (Cel7B) from T. reesei (TrEGI) that are able to hydrolyze cellulosic substrates more rapidly than the recombinant wild-type TrEGI at temperatures ranging from 50-70°C. When expressed in T. reesei, TrEGI variant G230A/D113S/D115T (G230A/D113S/D115T Tr_TrEGI) had a higher apparent melting temperature (3°C increase in Tm) and improved half-life at 60°C (t1/2 = 161 hr) than the recombinant (T. reesei host) wild-type TrEGI (t1/2 = 74 hr at 60°C, Tr_TrEGI). Furthermore, G230A/D113S/D115T Tr_TrEGI showed 2-fold improved activity compared to Tr_TrEGI at 65°C on solid cellulosic substrates, and was as efficient in hydrolyzing cellulose at 60°C as Tr_TrEGI was at 50°C. The activities and stabilities of the recombinant TrEGI enzymes followed similar trends but differed significantly in magnitude depending on the expression host (Escherichia coli cell-free, Saccharomyces cerevisiae, Neurospora crassa, or T. reesei). Compared to N.crassa-expressed TrEGI, S. cerevisiae-expressed TrEGI showed inferior activity and stability, which was attributed to the lack of cyclization of the N-terminal glutamine in Sc_TrEGI and not to differences in glycosylation. N-terminal pyroglutamate formation in TrEGI expressed in S. cerevisiae was found to be essential in elevating its activity and stability to levels similar to the T. reesei or N. crassa-expressed enzyme, highlighting the importance of this ubiquitous modification in GH7 enzymes.
Structure-guided evolution of T. reesei EGI was used to engineer enzymes with increased thermal stability and activity on solid cellulosic substrates. Production of TrEGI enzymes in four hosts highlighted the impact of the expression host and the role of N-terminal pyroglutamate formation on the activity and stability of TrEGI enzymes.
里氏木霉是用于经济地糖化纤维素生物质以生产生物燃料的关键纤维素酶来源。在高于里氏木霉纤维素酶最佳温度(约50°C)的温度下进行木质纤维素水解可带来许多显著优势,包括在高固含量下降低粘度、糖化过程中微生物污染风险降低、与高温生物质预处理的更大兼容性以及更快的水解速率。这些潜在优势促使人们努力改造里氏木霉纤维素酶,使其能够在60 - 70°C的温度下水解木质纤维素。
采用一种基于B因子指导的提高热稳定性的方法来改造里氏木霉内切葡聚糖酶I(Cel7B,TrEGI)的变体,这些变体在50 - 70°C的温度下能够比重组野生型TrEGI更快地水解纤维素底物。当在里氏木霉中表达时,TrEGI变体G230A/D113S/D115T(G230A/D113S/D115T Tr_TrEGI)比重组(里氏木霉宿主)野生型TrEGI具有更高的表观解链温度(熔点温度升高3°C),并且在60°C时半衰期有所改善(t1/2 = 161小时)(重组野生型TrEGI在60°C时t1/2 = 74小时)。此外,在65°C下,G230A/D113S/D115T Tr_TrEGI在固体纤维素底物上的活性比Tr_TrEGI提高了2倍,并且在60°C水解纤维素的效率与Tr_TrEGI在50°C时相同。重组TrEGI酶的活性和稳定性遵循相似的趋势,但根据表达宿主(大肠杆菌无细胞体系、酿酒酵母、粗糙脉孢菌或里氏木霉)的不同,其程度有显著差异。与粗糙脉孢菌表达的TrEGI相比,酿酒酵母表达的TrEGI活性和稳定性较差,这归因于Sc_TrEGI中N端谷氨酰胺缺乏环化,而不是糖基化的差异。发现在酿酒酵母中表达的TrEGI中N端焦谷氨酸的形成对于将其活性和稳定性提高到与里氏木霉或粗糙脉孢菌表达的酶相似的水平至关重要,突出了这种普遍存在的修饰在GH7酶中的重要性。
利用里氏木霉EGI的结构导向进化来改造在固体纤维素底物上具有更高热稳定性和活性的酶。在四种宿主中生产TrEGI酶突出了表达宿主的影响以及N端焦谷氨酸形成对TrEGI酶活性和稳定性的作用。