Maurer Andreas, Draba Vera, Jiang Yong, Schnaithmann Florian, Sharma Rajiv, Schumann Erika, Kilian Benjamin, Reif Jochen Christoph, Pillen Klaus
Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle Wittenberg, Betty-Heimann-Str. 3, 06120, Halle, Germany.
Interdisciplinary Center for Crop Plant Research (IZN), Betty-Heimann-Str. 3, 06120, Halle, Germany.
BMC Genomics. 2015 Apr 12;16(1):290. doi: 10.1186/s12864-015-1459-7.
Barley, globally the fourth most important cereal, provides food and beverages for humans and feed for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25 wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time.
Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL accounted for 64% of the cross-validated proportion of explained genotypic variance (pG). The strongest single QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy of 77% of cross-validated pG.
The elaborated causal models represent a fundamental step to explain flowering time in barley. In addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable, trait-improving exotic alleles.
大麦是全球第四重要的谷类作物,为人类提供食物和饮品,为畜牧业提供饲料。在不同气候条件下使谷物产量最大化很大程度上取决于开花的最佳时机。因此,调控开花时间对于满足未来的食物和饲料需求极为重要。我们通过将25个野生大麦与一个优良大麦品种杂交,培育出了首个大麦巢式关联作图(NAM)群体HEB - 25,并利用它来剖析开花时间的遗传结构。
在多地点试验中种植1420个株系并进行全基因组关联研究后,鉴定出8个主要数量性状位点(QTL)是控制大麦开花时间的主要决定因素。这些QTL占交叉验证的解释基因型方差(pG)比例的64%。最强的单个QTL效应对应已知的光周期响应基因Ppd - H1。对Ppd - H1的致病部分进行测序后,我们在HEB - 25中区分出12种单倍型,其中最强的外来单倍型比优良大麦单倍型使开花时间提前了11天。应用包括主效应和上位性相互作用的全基因组预测模型,能够以77%的交叉验证pG的 unmatched 准确率预测开花时间。
详细阐述的因果模型是解释大麦开花时间的重要一步。此外,我们的研究证实,HEB - 25中存在的外来生物多样性是剖析重要农艺性状遗传结构以及用有利的、改善性状的外来等位基因补充优良大麦育种库的宝贵工具箱。