Ali Lamiaa M A, Piñol Rafael, Villa-Bellosta Ricardo, Gabilondo Lierni, Millán Angel, Palacio Fernando, Sorribas Victor
Instituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza, C/Pedro Cerbuna 10, 50009 Zaragoza, Spain; Department of Toxicology, University of Zaragoza, Veterinary Faculty, C/Miguel Servet 177, E50013 Zaragoza, Spain.
Instituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza, C/Pedro Cerbuna 10, 50009 Zaragoza, Spain.
Toxicol In Vitro. 2015 Aug;29(5):962-75. doi: 10.1016/j.tiv.2015.04.003. Epub 2015 Apr 16.
We are reporting the cytocompatibility and cellular fate of an iron oxide/polymer nanoplatform (IONP) in its most basic formulation, using both mesenchymal (vascular smooth muscle cells, VSMC), and epithelial (opossum kidney, OK) cells. The cytotoxicity and cell internalization of the nanoplatform has been evaluated in relation to time of exposure and concentration of different components. A series of samples with different iron oxide nanoparticle, sizes, hydrodynamic sizes and iron/polymer ratio have been examined. In all cases cytotoxicity is low, and it is mostly determined by the internalization rate, being higher in VSMC than in OK cells. The mean lethal dose has a very narrow threshold, and necrosis is the only cell death type. IONP uptake shows little incidence on oxidative stress, and inflammasome activation is only observed with the smaller IONP at high concentration. The internalization rate in VSMC is determined by the polymer concentration exclusively. In OK cells, internalization rate seems to increase with decreasing hydrodynamic size. Internalization occurs through clathrin-dependent endocytosis, as it is prevented by potassium depletion and chlorpromazine. IONP are directed and accumulated in lysosomes. Under IONP overload, lysosomal dysfunction would cause cell death using concentrations that are hardly achieved in vivo.
我们报告了一种最基本配方的氧化铁/聚合物纳米平台(IONP)的细胞相容性和细胞命运,使用了间充质细胞(血管平滑肌细胞,VSMC)和上皮细胞(负鼠肾细胞,OK)。已针对暴露时间和不同成分的浓度评估了纳米平台的细胞毒性和细胞内化情况。研究了一系列具有不同氧化铁纳米颗粒尺寸、流体动力学尺寸和铁/聚合物比例的样品。在所有情况下,细胞毒性都很低,并且主要由内化率决定,VSMC中的内化率高于OK细胞。平均致死剂量的阈值非常窄,坏死是唯一的细胞死亡类型。IONP摄取对氧化应激的影响很小,仅在高浓度的较小IONP中观察到炎性小体激活。VSMC中的内化率仅由聚合物浓度决定。在OK细胞中,内化率似乎随着流体动力学尺寸的减小而增加。内化通过网格蛋白介导的内吞作用发生,因为钾离子耗竭和氯丙嗪可阻止这种作用。IONP被导向并积聚在溶酶体中。在IONP过载的情况下,溶酶体功能障碍会导致细胞死亡,而这种浓度在体内很难达到。