Suppr超能文献

用于基于脑连接组的疾病预测的可扩展融合套索支持向量机

SCALABLE FUSED LASSO SVM FOR CONNECTOME-BASED DISEASE PREDICTION.

作者信息

Watanabe Takanori, Scott Clayton D, Kessler Daniel, Angstadt Michael, Sripada Chandra S

机构信息

Dept. of EECS, University of Michigan, Ann Arbor, MI, 48109.

Dept. of Psychiatry, University of Michigan, Ann Arbor, MI, 48109.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2014 May;2014:5989-5993. doi: 10.1109/ICASSP.2014.6854753.

Abstract

There is substantial interest in developing machine-based methods that reliably distinguish patients from healthy controls using high dimensional correlation maps known as (FC's) generated from resting state fMRI. To address the dimensionality of FC's, the current body of work relies on feature selection techniques that are blind to the spatial structure of the data. In this paper, we propose to use the fused Lasso regularized support vector machine to explicitly account for the 6-D structure of the FC (defined by pairs of points in 3-D brain space). In order to solve the resulting nonsmooth and large-scale optimization problem, we introduce a novel and scalable algorithm based on the alternating direction method. Experiments on real resting state scans show that our approach can recover results that are more neuroscientifically informative than previous methods.

摘要

利用静息态功能磁共振成像(fMRI)生成的称为功能连接(FC)的高维相关图来开发能够可靠地区分患者与健康对照的基于机器的方法,这引起了人们极大的兴趣。为了解决功能连接的维度问题,当前的研究工作依赖于对数据空间结构视而不见的特征选择技术。在本文中,我们建议使用融合套索正则化支持向量机来明确考虑功能连接的六维结构(由三维脑空间中的点对定义)。为了解决由此产生的非光滑和大规模优化问题,我们引入了一种基于交替方向法的新颖且可扩展的算法。对真实静息态扫描数据的实验表明,我们的方法能够获得比以前的方法更具神经科学信息的结果。

相似文献

1
SCALABLE FUSED LASSO SVM FOR CONNECTOME-BASED DISEASE PREDICTION.用于基于脑连接组的疾病预测的可扩展融合套索支持向量机
Proc IEEE Int Conf Acoust Speech Signal Process. 2014 May;2014:5989-5993. doi: 10.1109/ICASSP.2014.6854753.

本文引用的文献

3
Clinical applications of the functional connectome.功能连接组学的临床应用。
Neuroimage. 2013 Oct 15;80:527-40. doi: 10.1016/j.neuroimage.2013.04.083. Epub 2013 Apr 28.
4
Learning and comparing functional connectomes across subjects.学习和比较不同受试者的功能连接组。
Neuroimage. 2013 Oct 15;80:405-15. doi: 10.1016/j.neuroimage.2013.04.007. Epub 2013 Apr 11.
5
Interpretable whole-brain prediction analysis with GraphNet.基于 GraphNet 的可解释全脑预测分析。
Neuroimage. 2013 May 15;72:304-21. doi: 10.1016/j.neuroimage.2012.12.062. Epub 2013 Jan 5.
7
Schizophrenia, neuroimaging and connectomics.精神分裂症、神经影像学和连接组学。
Neuroimage. 2012 Oct 1;62(4):2296-314. doi: 10.1016/j.neuroimage.2011.12.090. Epub 2012 Feb 24.
10
Total variation regularization for fMRI-based prediction of behavior.基于功能磁共振成像的行为预测的全变差正则化。
IEEE Trans Med Imaging. 2011 Jul;30(7):1328-40. doi: 10.1109/TMI.2011.2113378. Epub 2011 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验