Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Oncogene. 2016 Jan 14;35(2):218-27. doi: 10.1038/onc.2015.75. Epub 2015 Apr 20.
Reactivation of telomerase reverse transcriptase (TERT) expression is found in more than 85% of human cancers. The remaining cancers rely on the alternative lengthening of telomeres (ALT), a recombination-based mechanism for telomere-length maintenance. Prevalence of TERT reactivation over the ALT mechanism was linked to secondary TERT function unrelated to telomere length maintenance. To characterize this non-canonical function, we created a panel of ALT cells with recombinant expression of TERT and TERT variants: TERT-positive ALT cells showed higher tolerance to genotoxic insults compared with their TERT-negative counterparts. We identified telomere synthesis-defective TERT variants that bestowed similar genotoxic stress tolerance, indicating that telomere synthesis activity is dispensable for this survival phenotype. TERT expression improved the kinetics of double-strand chromosome break repair and reduced DNA damage-related nuclear division abnormalities, a phenotype associated with ALT tumors. Despite this reduction in cytological abnormalities, surviving TERT-positive ALT cells were found to have gross chromosomal instabilities. We sorted TERT-positive cells with cytogenetic changes and followed their growth. We found that the chromosome-number changes persisted, and TERT-positive ALT cells surviving genotoxic events propagated through subsequent generations with new chromosome numbers. Our data confirm that telomerase expression protects against double-strand DNA (dsDNA)-damaging events, and show that this protective function is uncoupled from its role in telomere synthesis. TERT expression promotes oncogene-transformed cell growth by reducing the inhibitory effects of cell-intrinsic (telomere attrition) and cell-extrinsic (chemical- or metabolism-induced genotoxic stress) challenges. These data provide the impetus to develop new therapeutic interventions for telomerase-positive cancers through simultaneous targeting of multiple telomerase activities.
端粒酶逆转录酶 (TERT) 的表达在超过 85%的人类癌症中被发现。其余的癌症依赖于端粒的替代性延长 (ALT),这是一种基于重组的端粒长度维持机制。TERT 的重新激活超过 ALT 机制与与端粒长度维持无关的次要 TERT 功能有关。为了描述这种非典型功能,我们创建了一组具有 TERT 和 TERT 变体重组表达的 ALT 细胞:与 TERT 阴性对照相比,TERT 阳性 ALT 细胞对遗传毒性损伤具有更高的耐受性。我们鉴定了具有缺陷的端粒合成 TERT 变体,赋予了相似的遗传毒性应激耐受性,表明端粒合成活性对于这种存活表型是可有可无的。TERT 表达改善了双链染色体断裂修复的动力学,并减少了与 ALT 肿瘤相关的 DNA 损伤相关核分裂异常,这一表型。尽管这种细胞异常减少,但存活的 TERT 阳性 ALT 细胞被发现具有广泛的染色体不稳定。我们对具有细胞遗传学变化的 TERT 阳性细胞进行分选,并跟踪它们的生长。我们发现染色体数量的变化持续存在,并且在遗传毒性事件中存活下来的 TERT 阳性 ALT 细胞通过随后具有新染色体数目的后代进行传播。我们的数据证实了端粒酶表达可防止双链 DNA (dsDNA) 损伤事件,并表明这种保护功能与其在端粒合成中的作用无关。TERT 表达通过减少细胞内在(端粒损耗)和细胞外在(化学或代谢诱导的遗传毒性应激)挑战的抑制作用,促进致癌基因转化细胞的生长。这些数据为通过同时靶向多种端粒酶活性为端粒酶阳性癌症开发新的治疗干预措施提供了动力。