†Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
§Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
ACS Nano. 2015 May 26;9(5):5520-35. doi: 10.1021/acsnano.5b01580. Epub 2015 Apr 27.
We shine light on the covalent modification of graphite and graphene substrates using diazonium chemistry under ambient conditions. We report on the nature of the chemical modification of these graphitic substrates, the relation between molecular structure and film morphology, and the impact of the covalent modification on the properties of the substrates, as revealed by local microscopy and spectroscopy techniques and electrochemistry. By careful selection of the reagents and optimizing reaction conditions, a high density of covalently grafted molecules is obtained, a result that is demonstrated in an unprecedented way by scanning tunneling microscopy (STM) under ambient conditions. With nanomanipulation, i.e., nanoshaving using STM, surface structuring and functionalization at the nanoscale is achieved. This manipulation leads to the removal of the covalently anchored molecules, regenerating pristine sp(2) hybridized graphene or graphite patches, as proven by space-resolved Raman microscopy and molecular self-assembly studies.
我们使用重氮化学在环境条件下对石墨和石墨烯衬底进行共价修饰。我们报告了这些石墨衬底的化学修饰的性质、分子结构和薄膜形貌之间的关系,以及共价修饰对衬底性质的影响,这些影响是通过局部显微镜和光谱技术以及电化学揭示的。通过仔细选择试剂和优化反应条件,可以获得高密度的共价接枝分子,这一结果通过在环境条件下使用扫描隧道显微镜(STM)以史无前例的方式得到证明。通过纳米操作,即使用 STM 进行纳米切削,在纳米尺度上实现表面结构化和功能化。这种操作导致共价锚定的分子被去除,再生出原始的 sp(2)杂化石墨烯或石墨片,这一点通过空间分辨拉曼显微镜和分子自组装研究得到证明。