Chang Xiaoli, Fang Yuan, Ivasenko Oleksandr
State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
Molecules. 2025 May 21;30(10):2236. doi: 10.3390/molecules30102236.
The performance of electrochemical (bio)sensors is fundamentally determined by the precise engineering of interfacial layers that govern (bio)analyte-surface interactions. However, elucidating structure-function relationships remains challenging due to the complex architecture of modern sensors and the irregular nanoscale morphology of many high-performance materials. In this study, we present a strategy for designing custom functional interfaces as well-defined platforms for probing interfacial processes. Focusing on epinephrine (EP) detection as an important representative of catecholamines, we compare the interfacial behavior of two carboxy-functionalized electrodes-grafted with either para-aminobenzoic acid (PAB) or 3,4,5-tricarboxybenzenediazonium (ATA)-against atomically flat highly oriented pyrolytic graphite (HOPG) as a control. While both modifiers introduce carboxyl groups, PAB forms disordered multilayers that inhibit surface responsiveness, whereas ATA yields an ultrathin monolayer with accessible COOH groups. Electrochemical analysis reveals that ATA-HOPG significantly enhances EP detection at sub-micromolar levels, facilitated by electrostatic interactions between surface-bound COO and protonated EP and its redox products. These results demonstrate that nanoscale control of diazonium grafting is crucial for optimizing bioanalyte recognition. More broadly, this work highlights how molecular-level surface engineering on high-quality carbon substrates can serve as a test-bed platform for the rational design of advanced electrochemical sensing interfaces.
电化学(生物)传感器的性能从根本上取决于界面层的精确工程设计,这些界面层控制着(生物)分析物与表面的相互作用。然而,由于现代传感器的复杂结构以及许多高性能材料不规则的纳米级形态,阐明结构 - 功能关系仍然具有挑战性。在本研究中,我们提出了一种设计定制功能界面的策略,作为探测界面过程的明确平台。以肾上腺素(EP)检测作为儿茶酚胺的重要代表,我们将两种羧基功能化电极(分别接枝对氨基苯甲酸(PAB)或3,4,5 - 三羧基苯重氮盐(ATA))的界面行为与作为对照的原子级平整的高度取向热解石墨(HOPG)进行比较。虽然两种修饰剂都引入了羧基,但PAB形成无序多层结构,抑制表面响应性,而ATA产生具有可及COOH基团的超薄单层。电化学分析表明,ATA - HOPG显著增强了亚微摩尔水平的EP检测,这得益于表面结合的COO与质子化的EP及其氧化还原产物之间的静电相互作用。这些结果表明,重氮盐接枝的纳米级控制对于优化生物分析物识别至关重要。更广泛地说,这项工作突出了在高质量碳基底上进行分子水平的表面工程如何能够作为先进电化学传感界面合理设计的试验平台。