Suppr超能文献

c-Myc以一种依赖于SUMO化的方式靶向蛋白酶体进行降解,这一过程受PIAS1、SENP7和RNF4调控。

c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4.

作者信息

González-Prieto Román, Cuijpers Sabine Ag, Kumar Ramesh, Hendriks Ivo A, Vertegaal Alfred Co

机构信息

a Department of Molecular Cell Biology; Leiden University Medical Center ; Leiden , The Netherlands.

出版信息

Cell Cycle. 2015;14(12):1859-72. doi: 10.1080/15384101.2015.1040965.

Abstract

c-Myc is the most frequently overexpressed oncogene in tumors, including breast cancer, colon cancer and lung cancer. Post-translational modifications comprising phosphorylation, acetylation and ubiquitylation regulate the activity of c-Myc. Recently, it was shown that c-Myc-driven tumors are strongly dependent on the SUMO pathway. Currently, the relevant SUMO target proteins in this pathway are unknown. Here we show that c-Myc is a target protein for SUMOylation, and that SUMOylated c-Myc is subsequently ubiquitylated and degraded by the proteasome. SUMO chains appeared to be dispensable for this process, polymerization-deficient SUMO mutants supported proteolysis of SUMOylated c-Myc. These results indicate that multiple SUMO monomers conjugated to c-Myc could be sufficient to direct SUMOylated c-Myc to the ubiquitin-proteasome pathway. Knocking down the SUMO-targeted ubiquitin ligase RNF4 enhanced the levels of SUMOylated c-Myc, indicating that RNF4 could recognize a multi-SUMOylated protein as a substrate in addition to poly-SUMOylated proteins. Knocking down the SUMO E3 ligase PIAS1 resulted in reduced c-Myc SUMOylation and increased c-Myc transcriptional activity, indicating that PIAS1 mediates c-Myc SUMOylation. Increased SUMOylation of c-Myc was noted upon knockdown of the SUMO protease SENP7, indicating that it also could regulate a multi-SUMOylated protein in addition to poly-SUMOylated proteins. C-Myc lacks KxE-type SUMOylation consensus motifs. We used mass spectrometry to identify 10 SUMO acceptor lysines: K52, K148, K157, K317, K323, K326, K389, K392, K398 and K430. Intriguingly, mutating all 10 SUMO acceptor lysines did not reduce c-Myc SUMOylation, suggesting that SUMO acceptor lysines in c-Myc act promiscuously. Our results provide novel insight into the complexity of c-Myc post-translational regulation.

摘要

c-Myc是肿瘤中最常过度表达的致癌基因,包括乳腺癌、结肠癌和肺癌。包括磷酸化、乙酰化和泛素化在内的翻译后修饰调节c-Myc的活性。最近研究表明,c-Myc驱动的肿瘤强烈依赖于SUMO途径。目前,该途径中相关的SUMO靶蛋白尚不清楚。在此我们表明,c-Myc是SUMO化的靶蛋白,SUMO化的c-Myc随后被泛素化并被蛋白酶体降解。SUMO链似乎对该过程并非必需,聚合缺陷型SUMO突变体支持SUMO化c-Myc的蛋白水解。这些结果表明,与c-Myc共轭的多个SUMO单体可能足以将SUMO化的c-Myc导向泛素-蛋白酶体途径。敲低SUMO靶向的泛素连接酶RNF4可提高SUMO化c-Myc的水平,表明RNF4除了能识别多聚SUMO化蛋白外,还能将多SUMO化蛋白识别为底物。敲低SUMO E3连接酶PIAS1会导致c-Myc SUMO化减少并增加c-Myc转录活性,表明PIAS1介导c-Myc SUMO化。敲低SUMO蛋白酶SENP7时,c-Myc的SUMO化增加,表明它除了能调节多聚SUMO化蛋白外,还能调节多SUMO化蛋白。c-Myc缺乏KxE型SUMO化共有基序。我们使用质谱法鉴定出10个SUMO受体赖氨酸:K52、K148、K157、K317、K323、K326、K389、K392、K398和K430。有趣的是,突变所有10个SUMO受体赖氨酸并不会降低c-Myc SUMO化,这表明c-Myc中的SUMO受体赖氨酸具有混杂作用。我们的结果为c-Myc翻译后调控的复杂性提供了新的见解。

相似文献

2
PIAS1介导的类泛素化促进人端粒蛋白TRF2的STUbL依赖性蛋白酶体降解。
FEBS Lett. 2015 Oct 24;589(21):3277-86. doi: 10.1016/j.febslet.2015.09.030. Epub 2015 Oct 8.
3
RNF4 和 VHL 调节 SUMO 缀合的缺氧诱导因子-2α的蛋白酶体降解。
Nucleic Acids Res. 2010 Apr;38(6):1922-31. doi: 10.1093/nar/gkp1157. Epub 2009 Dec 21.
4
RNF4 介导的 SUMO 靶向泛素化缓解 PARIS/ZNF746 介导的转录抑制。
Biochem Biophys Res Commun. 2020 May 21;526(1):110-116. doi: 10.1016/j.bbrc.2020.03.063. Epub 2020 Mar 17.
5
PIAS1 介导的 SUMO3 修饰调节雄激素受体的细胞分布和稳定性。
Cell Commun Signal. 2019 Nov 21;17(1):153. doi: 10.1186/s12964-019-0457-9.
6
PML SUMO 相互作用基序对 RNF4 或三氧化二砷诱导的核 PML 异构体降解的要求。
PLoS One. 2012;7(9):e44949. doi: 10.1371/journal.pone.0044949. Epub 2012 Sep 18.
8
SUMO 相关酶、PIAS1、PIAS4 和 RNF4 在同源重组修复 DNA 双链断裂中的作用。
Biochem Biophys Res Commun. 2022 Feb 5;591:95-101. doi: 10.1016/j.bbrc.2021.12.099. Epub 2021 Dec 30.
9
泛素-类泛素化修饰电路通过响应DNA损伤来控制活化的范可尼贫血ID复合物的剂量。
Mol Cell. 2015 Jan 8;57(1):150-64. doi: 10.1016/j.molcel.2014.12.001. Epub 2014 Dec 31.
10
Necdin促进PIAS1 SUMO E3连接酶的泛素依赖性降解。
PLoS One. 2014 Jun 9;9(6):e99503. doi: 10.1371/journal.pone.0099503. eCollection 2014.

引用本文的文献

1
小鼠和人类胚胎基因组激活始于单细胞阶段。
Front Cell Dev Biol. 2025 Jul 30;13:1594995. doi: 10.3389/fcell.2025.1594995. eCollection 2025.
2
NKD1通过抑制MYC的自噬降解来促进结肠癌进展。
Cell Death Dis. 2025 Jul 17;16(1):532. doi: 10.1038/s41419-025-07875-8.
3
靶向卵巢癌中的SUMO化修饰:敏感性、抗性及MYC的作用
iScience. 2025 Apr 29;28(6):112555. doi: 10.1016/j.isci.2025.112555. eCollection 2025 Jun 20.
4
RNF112促进c-Myc的泛素介导降解,抑制膀胱癌的增殖、迁移和脂质合成。
Adv Sci (Weinh). 2025 May;12(20):e2408311. doi: 10.1002/advs.202408311. Epub 2025 Apr 3.
5
参与乳腺癌缺氧的转录因子的翻译后修饰作用
Molecules. 2025 Feb 1;30(3):645. doi: 10.3390/molecules30030645.
7
SUMOylation 与乳腺癌中其他翻译后修饰的串扰。
Cell Mol Biol Lett. 2024 Aug 10;29(1):107. doi: 10.1186/s11658-024-00624-3.
8
蛋白质赖氨酸翻译后修饰的底物和功能多样性。
Genomics Proteomics Bioinformatics. 2024 May 9;22(1). doi: 10.1093/gpbjnl/qzae019.
9
斗牛獒犬淋巴瘤风险的基因组分析。
Vet Sci. 2023 Dec 14;10(12):703. doi: 10.3390/vetsci10120703.
10
MYC 乙酰化赖氨酸残基驱动致癌细胞转化,并调节细胞黏附非依赖性生长和存活的特定遗传程序。
Genes Dev. 2023 Oct 1;37(19-20):865-882. doi: 10.1101/gad.350736.123. Epub 2023 Oct 18.

本文引用的文献

1
以特定方式揭示全球 SUMOylation 信号网络。
Nat Struct Mol Biol. 2014 Oct;21(10):927-36. doi: 10.1038/nsmb.2890. Epub 2014 Sep 14.
2
赖氨酸靶向特异性在泛素和泛素样修饰途径中的作用。
Nat Struct Mol Biol. 2014 Apr;21(4):308-16. doi: 10.1038/nsmb.2792.
3
SUMO 链诱导的二聚化激活 RNF4。
Mol Cell. 2014 Mar 20;53(6):880-92. doi: 10.1016/j.molcel.2014.02.031.
4
Myc家族蛋白的类泛素化修饰。
PLoS One. 2014 Mar 7;9(3):e91072. doi: 10.1371/journal.pone.0091072. eCollection 2014.
5
揭示细胞周期进程中 SUMOylation 动力学,揭示 FoxM1 作为关键有丝分裂 SUMO 靶标蛋白。
Mol Cell. 2014 Mar 20;53(6):1053-66. doi: 10.1016/j.molcel.2014.02.001. Epub 2014 Feb 27.
6
与SUMO2结合的SENP6 Loop1结构的结构见解。
Protein Sci. 2014 Apr;23(4):433-41. doi: 10.1002/pro.2425. Epub 2014 Mar 10.
7
理解 MYC 驱动的侵袭性 B 细胞淋巴瘤:发病机制和分类。
Blood. 2013 Dec 5;122(24):3884-91. doi: 10.1182/blood-2013-05-498329. Epub 2013 Sep 5.
8
RNF111/Arkadia 是一种 SUMO 靶向的泛素连接酶,可促进 DNA 损伤反应。
J Cell Biol. 2013 Jun 10;201(6):797-807. doi: 10.1083/jcb.201212075.
9
SUMO 化修饰:健康与疾病中的一种调节蛋白修饰方式。
Annu Rev Biochem. 2013;82:357-85. doi: 10.1146/annurev-biochem-061909-093311.
10
阿卡迪亚,一种新型 SUMO 靶向泛素连接酶,参与 PML 的降解。
Mol Cell Biol. 2013 Jun;33(11):2163-77. doi: 10.1128/MCB.01019-12. Epub 2013 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验