Suppr超能文献

在中性pH溶液中使用氧化石墨烯修饰的TiO₂纳米棒阵列光阳极改善光电化学水氧化动力学

Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution.

作者信息

Chae Sang Youn, Sudhagar Pitchaimuthu, Fujishima Akira, Hwang Yun Jeong, Joo Oh-Shim

机构信息

Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgock Dong, Seoul 136-791, Republic of Korea.

出版信息

Phys Chem Chem Phys. 2015 Mar 28;17(12):7714-9. doi: 10.1039/c4cp05793g.

Abstract

We prepared TiO2 nanorod (NR) arrays on a fluorine-doped tin oxide substrate and decorated with graphene oxide (GO) to study their photoelectrochemical (PEC) water oxidation activities in two different electrolytes. The PEC performances of GO-decorated TiO2 NR photoanodes were characterized by optical and electrochemical impedance spectroscopy measurements. In 1 M KOH, the photocurrent density of the TiO2 NR film decreased after deposition of GO, while in the neutral pH electrolyte (phosphate buffered 0.5 M Na2SO4), the TiO2 NR photoanode showed enhanced performance after deposition with the 2 wt% GO solution. This was a consequence of the decrease in charge transfer resistance between the electrode surface and the electrolyte. The improvement of photocurrents by GO decoration was obvious near the onset potential of the photocurrents in the neutral pH electrolyte. These opposite contributions of GO on the TiO2 NR photoanodes suggest that GO can promote water oxidation effectively in a neutral electrolyte because depending on the pH of the electrolyte, different chemical species interact with the surface of the photoanode in the water oxidation reaction.

摘要

我们在氟掺杂氧化锡基底上制备了二氧化钛纳米棒(NR)阵列,并装饰上氧化石墨烯(GO),以研究它们在两种不同电解质中的光电化学(PEC)水氧化活性。通过光学和电化学阻抗谱测量对GO修饰的TiO₂ NR光阳极的PEC性能进行了表征。在1 M KOH中,沉积GO后TiO₂ NR薄膜的光电流密度降低,而在中性pH电解质(磷酸盐缓冲的0.5 M Na₂SO₄)中,用2 wt% GO溶液沉积后TiO₂ NR光阳极表现出增强的性能。这是电极表面与电解质之间电荷转移电阻降低的结果。在中性pH电解质中,光电流起始电位附近,GO修饰对光电流的改善很明显。GO对TiO₂ NR光阳极的这些相反作用表明,GO可以在中性电解质中有效地促进水氧化,因为根据电解质的pH值,不同的化学物种在水氧化反应中与光阳极表面相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验