Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), 76021 Karlsruhe, Germany.
Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
Nat Commun. 2015 Apr 22;6:6901. doi: 10.1038/ncomms7901.
Despite their pronounced importance for oxide-based photochemistry, optoelectronics and photovoltaics, only fairly little is known about the polaron lifetimes and binding energies. Polarons represent a crucial intermediate step populated immediately after dissociation of the excitons formed in the primary photoabsorption process. Here we present a novel approach to studying photoexcited polarons in an important photoactive oxide, ZnO, using infrared (IR) reflection-absorption spectroscopy (IRRAS) with a time resolution of 100 ms. For well-defined (10-10) oriented ZnO single-crystal substrates, we observe intense IR absorption bands at around 200 meV exhibiting a pronounced temperature dependence. On the basis of first-principles-based electronic structure calculations, we assign these features to hole polarons of intermediate coupling strength.
尽管对于基于氧化物的光化学、光电学和光伏来说,极化子具有显著的重要性,但人们对其寿命和结合能知之甚少。极化子是在初级光吸收过程中形成的激子离解后立即占据的关键中间步骤。在这里,我们提出了一种使用具有 100 毫秒时间分辨率的红外(IR)反射吸收光谱(IRRAS)研究重要光活性氧化物 ZnO 中光激发极化子的新方法。对于定义明确的(10-10)取向 ZnO 单晶衬底,我们观察到在大约 200 meV 处呈现出明显的温度依赖性的强烈红外吸收带。基于基于第一性原理的电子结构计算,我们将这些特征分配给中等耦合强度的空穴极化子。