Suppr超能文献

人工胰腺背景下的GoCARB

GoCARB in the Context of an Artificial Pancreas.

作者信息

Agianniotis Aristotelis, Anthimopoulos Marios, Daskalaki Elena, Drapela Aurélie, Stettler Christoph, Diem Peter, Mougiakakou Stavroula

机构信息

Diabetes Technology Research Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland.

Department of Endocrinology, Diabetes & Clinical Nutrition, Bern University Hospital "Inselspital," Bern, Switzerland.

出版信息

J Diabetes Sci Technol. 2015 May;9(3):549-55. doi: 10.1177/1932296815583333. Epub 2015 Apr 21.

Abstract

BACKGROUND

In an artificial pancreas (AP), the meals are either manually announced or detected and their size estimated from the blood glucose level. Both methods have limitations, which result in suboptimal postprandial glucose control. The GoCARB system is designed to provide the carbohydrate content of meals and is presented within the AP framework.

METHOD

The combined use of GoCARB with a control algorithm is assessed in a series of 12 computer simulations. The simulations are defined according to the type of the control (open or closed loop), the use or not-use of GoCARB and the diabetics' skills in carbohydrate estimation.

RESULTS

For bad estimators without GoCARB, the percentage of the time spent in target range (70-180 mg/dl) during the postprandial period is 22.5% and 66.2% for open and closed loop, respectively. When the GoCARB is used, the corresponding percentages are 99.7% and 99.8%. In case of open loop, the time spent in severe hypoglycemic events (<50 mg/dl) is 33.6% without the GoCARB and is reduced to 0.0% when the GoCARB is used. In case of closed loop, the corresponding percentage is 1.4% without the GoCARB and is reduced to 0.0% with the GoCARB.

CONCLUSION

The use of GoCARB improves the control of postprandial response and glucose profiles especially in the case of open loop. However, the most efficient regulation is achieved by the combined use of the control algorithm and the GoCARB.

摘要

背景

在人工胰腺(AP)中,进餐情况要么手动告知,要么进行检测,并根据血糖水平估算进餐量。这两种方法都有局限性,导致餐后血糖控制不理想。GoCARB系统旨在提供进餐的碳水化合物含量,并在AP框架内呈现。

方法

在一系列12次计算机模拟中评估GoCARB与控制算法的联合使用。模拟根据控制类型(开环或闭环)、是否使用GoCARB以及糖尿病患者估算碳水化合物的技能来定义。

结果

对于估算能力差且未使用GoCARB的患者,餐后期间处于目标范围(70 - 180毫克/分升)的时间百分比,开环时为22.5%,闭环时为66.2%。使用GoCARB时,相应百分比分别为99.7%和99.8%。在开环情况下,未使用GoCARB时发生严重低血糖事件(<50毫克/分升)的时间为33.6%,使用GoCARB时降至0.0%。在闭环情况下,未使用GoCARB时相应百分比为1.4%,使用GoCARB时降至0.0%。

结论

使用GoCARB可改善餐后反应和血糖曲线的控制,尤其是在开环情况下。然而,通过控制算法和GoCARB的联合使用可实现最有效的调节。

相似文献

1
GoCARB in the Context of an Artificial Pancreas.人工胰腺背景下的GoCARB
J Diabetes Sci Technol. 2015 May;9(3):549-55. doi: 10.1177/1932296815583333. Epub 2015 Apr 21.

引用本文的文献

4
Closed-Loop Insulin Delivery Systems: Past, Present, and Future Directions.闭环胰岛素输送系统:过去、现在和未来方向。
Front Endocrinol (Lausanne). 2022 Jun 6;13:919942. doi: 10.3389/fendo.2022.919942. eCollection 2022.

本文引用的文献

9
The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas.使用强化学习算法应对人工胰腺的挑战。
Expert Rev Med Devices. 2013 Sep;10(5):661-73. doi: 10.1586/17434440.2013.827515. Epub 2013 Aug 23.
10
Standards of medical care in diabetes--2013.《糖尿病医疗护理标准——2013》
Diabetes Care. 2013 Jan;36 Suppl 1(Suppl 1):S11-66. doi: 10.2337/dc13-S011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验