Tang Lisa, Hero Alfred, Hamarneh Ghassan
Medical Image Analysis Lab., School of Computing Science, Simon Fraser University.
Departments of EECS, BME and Statistics, University of Michigan - Ann Arbor.
Proc IEEE Int Symp Biomed Imaging. 2012 May 5;2012:728-731. doi: 10.1109/ISBI.2012.6235651.
More and more researchers are beginning to use multiple dissimilarity metrics or image features for medical image registration. In most of these approaches, however, weights for ranking the relative importance between the selected metrics are empirically tuned and fixed for the entire image domain. Different parts of a medical image, however, may contain significantly different appearance properties such that a metric may only be applicable in certain image regions but less so in other regions. In this paper, we propose to adapt this weighting to generate a locally-adaptive set of dissimilarity metrics such that the overall metric set encourages proper spatial alignment. Using contextual information or via a learning procedure, our approach generates a vector weight map that determines, at each spatial location, the relative importance of each constituent of the overall metric. Our approach was evaluated on 2 datasets of 15 computed tomography (CT) lung images and 40 brain magnetic resonance images (MRI). Experiments show that our approach of using a locally-adaptive set of dissimilarity metrics gives superior results when compared against its non-region specific variant.
越来越多的研究人员开始在医学图像配准中使用多种不同的相似度度量或图像特征。然而,在大多数这些方法中,用于对所选度量之间的相对重要性进行排序的权重是通过经验调整的,并且在整个图像域中是固定的。然而,医学图像的不同部分可能包含显著不同的外观属性,使得某个度量可能仅适用于某些图像区域,而在其他区域则不太适用。在本文中,我们建议调整这种加权,以生成一组局部自适应的相似度度量,使得整个度量集鼓励正确的空间对齐。通过使用上下文信息或通过学习过程,我们的方法生成一个向量权重图,该图在每个空间位置确定整个度量的每个组成部分的相对重要性。我们的方法在包含15幅计算机断层扫描(CT)肺部图像和40幅脑磁共振图像(MRI)的2个数据集上进行了评估。实验表明,与非区域特定变体相比,我们使用局部自适应相似度度量集的方法给出了更好的结果。