Suppr超能文献

适用于低成本无线传感器网络节点的时间序列预测在线学习算法。

Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes.

作者信息

Pardo Juan, Zamora-Martínez Francisco, Botella-Rocamora Paloma

机构信息

ESAI-Embedded Systems and Artificial Intelligence Group, Escuela Superior de Enseñanzas Técnicas, Universidad CEU Cardenal Herrera, C/San Bartolomé, 46115 Valencia, Spain.

出版信息

Sensors (Basel). 2015 Apr 21;15(4):9277-304. doi: 10.3390/s150409277.

Abstract

Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.

摘要

时间序列预测是一种重要的预测方法,可应用于广泛的问题。特别是,预测室内温度有助于提高家庭中暖通空调(HVAC,即供暖、通风和空调)系统的利用率,从而提高能源效率。出于这个目的,本文描述了如何在低成本片上系统中实现人工神经网络(ANN)算法,以开发一个自主智能无线传感器网络。本文基于低资源和低成本的微控制器技术(如8051MCU),使用无线传感器网络(WSN)来监测和预测智能家居中的室内温度。已开发出一种基于人工神经网络反向传播(BP)算法的在线学习方法,用于实时时间序列学习。它利用到达系统的每个新数据进行模型训练,无需像往常那样保存大量数据来创建历史数据库,即无需先验知识。因此,为了验证该方法,通过贝叶斯基线模型进行了模拟研究,以便与实际应用的数据库进行比较,旨在观察其性能和准确性。本文的核心是一种基于BP算法的新算法,已对其进行了详细描述,而挑战在于如何在硬件资源非常少的简单架构中实现计算要求高的算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验