Odhams Christopher A, Cunninghame Graham Deborah S, Vyse Timothy J
Department of Medical & Molecular Genetics, King's College London, London, United Kingdom.
Academic Department of Rheumatology, Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom.
PLoS Genet. 2017 Oct 23;13(10):e1007071. doi: 10.1371/journal.pgen.1007071. eCollection 2017 Oct.
Genome-wide association studies have identified hundreds of risk loci for autoimmune disease, yet only a minority (~25%) share genetic effects with changes to gene expression (eQTLs) in immune cells. RNA-Seq based quantification at whole-gene resolution, where abundance is estimated by culminating expression of all transcripts or exons of the same gene, is likely to account for this observed lack of colocalisation as subtle isoform switches and expression variation in independent exons can be concealed. We performed integrative cis-eQTL analysis using association statistics from twenty autoimmune diseases (560 independent loci) and RNA-Seq data from 373 individuals of the Geuvadis cohort profiled at gene-, isoform-, exon-, junction-, and intron-level resolution in lymphoblastoid cell lines. After stringently testing for a shared causal variant using both the Joint Likelihood Mapping and Regulatory Trait Concordance frameworks, we found that gene-level quantification significantly underestimated the number of causal cis-eQTLs. Only 5.0-5.3% of loci were found to share a causal cis-eQTL at gene-level compared to 12.9-18.4% at exon-level and 9.6-10.5% at junction-level. More than a fifth of autoimmune loci shared an underlying causal variant in a single cell type by combining all five quantification types; a marked increase over current estimates of steady-state causal cis-eQTLs. Causal cis-eQTLs detected at different quantification types localised to discrete epigenetic annotations. We applied a linear mixed-effects model to distinguish cis-eQTLs modulating all expression elements of a gene from those where the signal is only evident in a subset of elements. Exon-level analysis detected disease-associated cis-eQTLs that subtly altered transcription globally across the target gene. We dissected in detail the genetic associations of systemic lupus erythematosus and functionally annotated the candidate genes. Many of the known and novel genes were concealed at gene-level (e.g. IKZF2, TYK2, LYST). Our findings are provided as a web resource.
全基因组关联研究已经确定了数百个自身免疫性疾病的风险位点,但只有少数(约25%)与免疫细胞中基因表达变化(表达数量性状基因座,eQTL)具有共同的遗传效应。基于RNA测序在全基因分辨率下进行定量分析,即通过汇总同一基因的所有转录本或外显子的表达来估计丰度,可能是观察到的这种共定位缺乏的原因,因为独立外显子中的细微异构体转换和表达变化可能被掩盖。我们使用来自20种自身免疫性疾病(560个独立位点)的关联统计数据以及来自Geuvadis队列373名个体的RNA测序数据进行整合顺式eQTL分析,这些个体的淋巴母细胞系在基因、异构体、外显子、连接点和内含子水平分辨率下进行了分析。在使用联合似然映射和调控性状一致性框架对共享因果变异进行严格测试后,我们发现基因水平定量显著低估了因果顺式eQTL的数量。在基因水平上,只有5.0 - 5.3%的位点被发现共享一个因果顺式eQTL,而在外显子水平为12.9 - 18.4%,在连接点水平为9.6 - 10.5%。通过结合所有五种定量类型,超过五分之一的自身免疫性位点在单一细胞类型中共享一个潜在的因果变异;这比目前对稳态因果顺式eQTL的估计有显著增加。在不同定量类型中检测到的因果顺式eQTL定位于离散的表观遗传注释。我们应用线性混合效应模型来区分调节基因所有表达元件的顺式eQTL和那些信号仅在部分元件中明显的顺式eQTL。外显子水平分析检测到与疾病相关的顺式eQTL,这些eQTL会在整个靶基因上微妙地改变转录。我们详细剖析了系统性红斑狼疮的遗传关联,并对候选基因进行了功能注释。许多已知和新发现的基因在基因水平上被掩盖(例如IKZF2、TYK2、LYST)。我们的研究结果作为一个网络资源提供。