Suppr超能文献

通过联合运动校正和图辅助3D神经网络进行视网膜OCT层分割

Retinal OCT Layer Segmentation via Joint Motion Correction and Graph-Assisted 3D Neural Network.

作者信息

Wang Yiqian, Galang Carlo, Freeman William R, Warter Alexandra, Heinke Anna, Bartsch Dirk-Uwe G, Nguyen Truong Q, An Cheolhong

机构信息

Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, USA.

Jacobs Retina Center, Shiley Eye Institute, University of California, San Diego, CA 92093, USA.

出版信息

IEEE Access. 2023;11:103319-103332. doi: 10.1109/access.2023.3317011. Epub 2023 Sep 18.

Abstract

Optical Coherence Tomography (OCT) is a widely used 3D imaging technology in ophthalmology. Segmentation of retinal layers in OCT is important for diagnosis and evaluation of various retinal and systemic diseases. While 2D segmentation algorithms have been developed, they do not fully utilize contextual information and suffer from inconsistency in 3D. We propose neural networks to combine motion correction and segmentation in 3D. The proposed segmentation network utilizes 3D convolution and a novel graph pyramid structure with graph-inspired building blocks. We also collected one of the largest OCT segmentation dataset with manually corrected segmentation covering both normal examples and various diseases. The experimental results on three datasets with multiple instruments and various diseases show the proposed method can achieve improved segmentation accuracy compared with commercial softwares and conventional or deep learning methods in literature. Specifically, the proposed method reduced the average error from 38.47% to 11.43% compared to clinically available commercial software for severe deformations caused by diseases. The diagnosis and evaluation of diseases with large deformation such as DME, wet AMD and CRVO would greatly benefit from the improved accuracy, which impacts tens of millions of patients.

摘要

光学相干断层扫描(OCT)是眼科广泛使用的三维成像技术。OCT中视网膜层的分割对于各种视网膜和全身性疾病的诊断和评估至关重要。虽然已经开发了二维分割算法,但它们没有充分利用上下文信息,并且在三维中存在不一致性。我们提出了神经网络来结合三维运动校正和分割。所提出的分割网络利用三维卷积和具有受图启发构建块的新型图金字塔结构。我们还收集了最大的OCT分割数据集之一,其中包括手动校正的分割,涵盖正常示例和各种疾病。在具有多种仪器和各种疾病的三个数据集上的实验结果表明,与文献中的商业软件和传统或深度学习方法相比,所提出的方法可以提高分割精度。具体而言,与用于由疾病引起的严重变形的临床可用商业软件相比,所提出的方法将平均误差从38.47%降低到11.43%。对于诸如糖尿病性黄斑水肿(DME)、湿性年龄相关性黄斑变性(wet AMD)和视网膜中央静脉阻塞(CRVO)等具有大变形的疾病的诊断和评估将从提高的精度中大大受益,这影响着数千万患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c456/11684756/9f9680bc3235/nihms-1935154-f0010.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验