Menichetti Giulia, Bianconi Ginestra, Castellani Gastone, Giampieri Enrico, Remondini Daniel
Department of Physics and Astronomy and INFN, Bologna University, Viale B. Pichat 6/2, 40127 Bologna, Italy.
Mol Biosyst. 2015 Jul;11(7):1824-31. doi: 10.1039/c5mb00143a.
We characterize different cell states, related to cancer and ageing phenotypes, by a measure of entropy of network ensembles, integrating gene expression profiling values and protein interaction network topology. In our case studies, network entropy, that by definition estimates the number of possible network instances satisfying the given constraints, can be interpreted as a measure of the "parameter space" available to the cell. Network entropy was able to characterize specific pathological conditions: normal versus cancer cells, primary tumours that developed metastasis or relapsed, and extreme longevity samples. Moreover, this approach has been applied at different scales, from whole network to specific subnetworks (biological pathways defined on a priori biological knowledge) and single nodes (genes), allowing a deeper understanding of the cell processes involved.
我们通过网络集合的熵度量来表征与癌症和衰老表型相关的不同细胞状态,该度量整合了基因表达谱值和蛋白质相互作用网络拓扑结构。在我们的案例研究中,网络熵(根据定义,它估计满足给定约束的可能网络实例的数量)可以解释为细胞可用的“参数空间”的一种度量。网络熵能够表征特定的病理状况:正常细胞与癌细胞、发生转移或复发的原发性肿瘤以及极端长寿样本。此外,这种方法已应用于不同尺度,从整个网络到特定子网(基于先验生物学知识定义的生物途径)和单个节点(基因),从而能够更深入地理解所涉及的细胞过程。