Suppr超能文献

癌症中增加的信号熵需要蛋白质相互作用网络的无标度特性。

Increased signaling entropy in cancer requires the scale-free property of protein interaction networks.

作者信息

Teschendorff Andrew E, Banerji Christopher R S, Severini Simone, Kuehn Reimer, Sollich Peter

机构信息

1] Statistical Cancer Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, United Kingdom [2] CAS Key Lab for Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.

1] Statistical Cancer Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, United Kingdom [2] Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London WC1E6BT United Kingdom [3] Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom.

出版信息

Sci Rep. 2015 Apr 28;5:9646. doi: 10.1038/srep09646.

Abstract

One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology.

摘要

癌细胞的关键特征之一是表型可塑性增加,这是由潜在的基因和表观遗传扰动驱动的。然而,在系统层面上,尚不清楚这些扰动如何导致观察到的可塑性增加。阐明此类系统层面的原理对于增进对癌症的理解至关重要。最近的研究表明,信号熵是信号通路混杂性的总体度量,可通过将样本的基因表达谱与蛋白质相互作用网络整合来计算,它与表型可塑性相关,并且与正常组织相比,在癌症中有所增加。在此,我们开发了一个计算框架,用于研究网络扰动对信号熵的影响。我们证明,癌症中增加的信号熵由两个因素驱动:(i)相互作用网络的无标度(或接近无标度)拓扑结构,以及(ii)差异基因表达与节点连通性之间的微妙正相关。事实上,我们表明,如果蛋白质相互作用网络是由泊松度分布描述的随机图,那么癌症通常不会表现出增加的信号熵。总之,这项工作揭示了癌症、信号熵和相互作用网络拓扑结构之间的深层联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96b2/4412078/5575a0415c57/srep09646-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验