Ziebert Falko, Mohrbach Hervé, Kulić Igor M
Albert-Ludwigs-Universität, 79104 Freiburg, Germany.
Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France.
Phys Rev Lett. 2015 Apr 10;114(14):148101. doi: 10.1103/PhysRevLett.114.148101. Epub 2015 Apr 6.
The fate of every eukaryotic cell subtly relies on the exceptional mechanical properties of microtubules. Despite significant efforts, understanding their unusual mechanics remains elusive. One persistent, unresolved mystery is the formation of long-lived arcs and rings, e.g., in kinesin-driven gliding assays. To elucidate their physical origin we develop a model of the inner workings of the microtubule's lattice, based on recent experimental evidence for a conformational switch of the tubulin dimer. We show that the microtubule lattice itself coexists in discrete polymorphic states. Metastable curved states can be induced via a mechanical hysteresis involving torques and forces typical of few molecular motors acting in unison, in agreement with the observations.
每个真核细胞的命运都微妙地依赖于微管非凡的力学特性。尽管付出了巨大努力,但理解它们不同寻常的力学原理仍然难以捉摸。一个长期存在且未解决的谜团是长寿命弧形和环形结构的形成,例如在驱动蛋白驱动的滑行实验中。为了阐明它们的物理起源,我们基于微管蛋白二聚体构象转换的最新实验证据,建立了一个微管晶格内部运作的模型。我们表明,微管晶格本身以离散的多态形式共存。亚稳态弯曲状态可以通过涉及少数协同作用的分子马达典型的扭矩和力的机械滞后诱导产生,这与观察结果一致。