Amir Naama, Cohen Dan, Wolfson Haim J
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
Bioinformatics. 2015 Sep 1;31(17):2801-7. doi: 10.1093/bioinformatics/btv270. Epub 2015 Apr 25.
Atomic resolution modeling of large multimolecular assemblies is a key task in Structural Cell Biology. Experimental techniques can provide atomic resolution structures of single proteins and small complexes, or low resolution data of large multimolecular complexes.
We present a novel integrative computational modeling method, which integrates both low and high resolution experimental data. The algorithm accepts as input atomic resolution structures of the individual subunits obtained from X-ray, NMR or homology modeling, and interaction data between the subunits obtained from mass spectrometry. The optimal assembly of the individual subunits is formulated as an Integer Linear Programming task. The method was tested on several representative complexes, both in the bound and unbound cases. It placed correctly most of the subunits of multimolecular complexes of up to 16 subunits and significantly outperformed the CombDock and Haddock multimolecular docking methods.
http://bioinfo3d.cs.tau.ac.il/DockStar
naamaamir@mail.tau.ac.il or wolfson@tau.ac.il
Supplementary data are available at Bioinformatics online.
大型多分子组装体的原子分辨率建模是结构细胞生物学中的一项关键任务。实验技术能够提供单个蛋白质和小复合物的原子分辨率结构,或者大型多分子复合物的低分辨率数据。
我们提出了一种新颖的综合计算建模方法,该方法整合了低分辨率和高分辨率实验数据。该算法接受从X射线、核磁共振或同源建模获得的各个亚基的原子分辨率结构,以及从质谱获得的亚基间相互作用数据作为输入。各个亚基的最优组装被表述为一个整数线性规划任务。该方法在几种有代表性的复合物上进行了测试,包括结合态和非结合态情况。它正确定位了多达16个亚基的多分子复合物的大部分亚基,并且显著优于CombDock和Haddock多分子对接方法。
http://bioinfo3d.cs.tau.ac.il/DockStar
naamaamir@mail.tau.ac.il或wolfson@tau.ac.il
补充数据可在《生物信息学》在线获取。