Suppr超能文献

PepCrawler:一种基于快速搜索随机树(RRT)的算法,用于对肽抑制剂进行高分辨率精修和结合亲和力估计。

PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors.

机构信息

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Bioinformatics. 2011 Oct 15;27(20):2836-42. doi: 10.1093/bioinformatics/btr498. Epub 2011 Aug 31.

Abstract

MOTIVATION

Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein-peptide complexes competing with the original PPI. The prediction of such complexes is especially challenging due to the high flexibility of peptide conformations.

RESULTS

In this article, we present PepCrawler, a new tool for deriving binding peptides from protein-protein complexes and prediction of peptide-protein complexes, by performing high-resolution docking refinement and estimation of binding affinity. By using a fast path planning approach, PepCrawler rapidly generates large amounts of flexible peptide conformations, allowing backbone and side chain flexibility. A newly introduced binding energy funnel 'steepness score' was applied for the evaluation of the protein-peptide complexes binding affinity. PepCrawler simulations predicted high binding affinity for native protein-peptide complexes benchmark and low affinity for low-energy decoy complexes. In three cases, where wet lab data are available, the PepCrawler predictions were consistent with the data. Comparing to other state of the art flexible peptide-protein structure prediction algorithms, our algorithm is very fast, and takes only minutes to run on a single PC.

AVAILABILITY

http://bioinfo3d.cs.tau.ac.il/PepCrawler/

CONTACT

eladdons@tau.ac.il; wolfson@tau.ac.il.

摘要

动机

蛋白质-蛋白质相互作用(PPI)抑制剂的设计是结构生物信息学和计算机辅助药物设计中的一个关键挑战。肽部分模拟了相互作用蛋白质之一的界面区域,是形成与原始 PPI 竞争的蛋白质-肽复合物的天然候选物。由于肽构象的高度灵活性,预测这种复合物尤其具有挑战性。

结果

在本文中,我们提出了 PepCrawler,这是一种从蛋白质-蛋白质复合物中衍生结合肽并预测肽-蛋白质复合物的新工具,通过执行高分辨率对接精化和结合亲和力估计。通过使用快速路径规划方法,PepCrawler 快速生成大量的柔性肽构象,允许骨干和侧链的灵活性。新引入的结合能漏斗“陡峭度评分”用于评估蛋白质-肽复合物的结合亲和力。PepCrawler 模拟预测了天然蛋白质-肽复合物的高结合亲和力和低能量诱饵复合物的低亲和力。在三种情况下,当有湿实验室数据可用时,PepCrawler 的预测与数据一致。与其他最先进的柔性肽-蛋白质结构预测算法相比,我们的算法非常快速,在单个 PC 上运行仅需几分钟。

可用性

http://bioinfo3d.cs.tau.ac.il/PepCrawler/

联系方式

eladdons@tau.ac.il; wolfson@tau.ac.il.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验