Suppr超能文献

纹状体中的时间的可扩展群体代码。

A scalable population code for time in the striatum.

机构信息

Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal; Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal.

Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal; Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal.

出版信息

Curr Biol. 2015 May 4;25(9):1113-22. doi: 10.1016/j.cub.2015.02.036. Epub 2015 Apr 23.

Abstract

To guide behavior and learn from its consequences, the brain must represent time over many scales. Yet, the neural signals used to encode time in the seconds-to-minute range are not known. The striatum is a major input area of the basal ganglia associated with learning and motor function. Previous studies have also shown that the striatum is necessary for normal timing behavior. To address how striatal signals might be involved in timing, we recorded from striatal neurons in rats performing an interval timing task. We found that neurons fired at delays spanning tens of seconds and that this pattern of responding reflected the interaction between time and the animals' ongoing sensorimotor state. Surprisingly, cells rescaled responses in time when intervals changed, indicating that striatal populations encoded relative time. Moreover, time estimates decoded from activity predicted timing behavior as animals adjusted to new intervals, and disrupting striatal function led to a decrease in timing performance. These results suggest that striatal activity forms a scalable population code for time, providing timing signals that animals use to guide their actions.

摘要

为了指导行为并从其结果中学习,大脑必须在多个时间尺度上表示时间。然而,用于在秒到分钟范围内编码时间的神经信号尚不清楚。纹状体是与学习和运动功能相关的基底神经节的主要输入区域。先前的研究还表明,纹状体对于正常的计时行为是必要的。为了解纹状体信号如何参与计时,我们在大鼠执行间隔计时任务时记录了纹状体神经元的活动。我们发现神经元在跨越数十秒的延迟时间内放电,并且这种反应模式反映了时间与动物正在进行的感觉运动状态之间的相互作用。令人惊讶的是,当间隔发生变化时,细胞会对时间进行重新缩放响应,表明纹状体群体编码了相对时间。此外,从活动中解码的时间估计值预测了动物在适应新间隔时的计时行为,而破坏纹状体功能会导致计时表现下降。这些结果表明,纹状体活动形成了时间的可扩展群体编码,提供了动物用来指导其行为的计时信号。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验