Suppr超能文献

使用Eve对基于图谱的白质分割进行评估。

Evaluation of Atlas-Based White Matter Segmentation with Eve.

作者信息

Plassard Andrew J, Hinton Kendra E, Venkatraman Vijay, Gonzalez Christopher, Resnick Susan M, Landman Bennett A

机构信息

Computer Science, Vanderbilt University, Nashville, TN, USA 37235.

Psychology, Vanderbilt University, Nashville, TN, USA 37235.

出版信息

Proc SPIE Int Soc Opt Eng. 2015 Mar 20;9413. doi: 10.1117/12.2081613.

Abstract

Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary.

摘要

多图谱标记已广泛应用于磁共振成像的全脑标记。最近的挑战表明,领先技术在皮质灰质标记方面已接近(或达到)人类专家的可重复性。然而,这些方法往往将白质视为基本均匀的(因为白质在结构MRI上表现出等强度信号)。白质图谱的最新技术是单受试者约翰霍普金斯伊芙图谱。许多方法试图使用纤维束成像和/或方向信息来识别不同受试者之间的同源白质结构。尽管在大纤维束方面取得了成功,但这些方法一直受到行程细微差异、低信噪比以及较小纤维束复杂结构关系的困扰。在这里,我们研究使用基于图谱的标记将伊芙图谱传播到未标记的数据集。我们使用从单个人工标记图谱派生的合成图谱评估单图谱标记和多图谱标记。在10名受试者的5条代表性纤维束上,我们证明:(1)单图谱标记通常在平均表面距离2mm内提供分割结果;(2)在结构MRI白质内对扩散张量成像(DTI)标记进行形态学约束可降低变异性;(3)多图谱标记并未提高准确性。这些研究初步表明,经过校正的单图谱标记是合理的,但应谨慎使用。为了进行多图谱标记并更全面地表征整体性能,需要更多的标记数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b00f/4405655/ec6090627622/nihms657875f1.jpg

相似文献

6
Consistent cortical reconstruction and multi-atlas brain segmentation.一致的皮质重建和多图谱脑部分割。
Neuroimage. 2016 Sep;138:197-210. doi: 10.1016/j.neuroimage.2016.05.030. Epub 2016 May 13.

引用本文的文献

5
Consistent cortical reconstruction and multi-atlas brain segmentation.一致的皮质重建和多图谱脑部分割。
Neuroimage. 2016 Sep;138:197-210. doi: 10.1016/j.neuroimage.2016.05.030. Epub 2016 May 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验