Suppr超能文献

蛋白质结晶图像分类的半监督学习评估

Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery.

作者信息

Sigdel Madhav, Dinç İmren, Dinç Semih, Sigdel Madhu S, Pusey Marc L, Aygün Ramazan S

机构信息

DataMedia Research Lab, Department of Computer Science, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States.

iXpressGenes, Inc., 601 Genome Way, Huntsville, Alabama 35806, United States.

出版信息

Proc IEEE Southeastcon. 2014 Mar;2014. doi: 10.1109/SECON.2014.6950649.

Abstract

In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset.

摘要

在本文中,我们研究了两种包装器方法在具有有限标记图像的蛋白质结晶图像分类半监督学习算法中的性能。首先,我们使用朴素贝叶斯(NB)和序列最小优化(SMO)作为基础分类器,通过自训练来评估半监督方法的性能。这些分类器返回的置信度值用于选择高置信度预测,以用于自训练。其次,我们分析了使用NB、SMO、多层感知器(MLP)、J48和随机森林(RF)分类器的另一种两阶段思想(YATSI)半监督学习的性能。将这些结果与使用相同训练集的基本监督学习进行比较。我们在一个由2250张蛋白质结晶图像组成的数据集上进行实验,该数据集用于不同比例的训练和测试数据。我们的结果表明,使用自训练和YATSI半监督方法的NB和SMO相对于监督学习提高了准确率。另一方面,MLP、J48和RF在基本监督学习下表现更好。总体而言,对于我们的数据集,随机森林分类器在监督学习中产生了最佳准确率。

相似文献

1
Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery.
Proc IEEE Southeastcon. 2014 Mar;2014. doi: 10.1109/SECON.2014.6950649.
2
An Impartial Semi-Supervised Learning Strategy for Imbalanced Classification on VHR Images.
Sensors (Basel). 2020 Nov 23;20(22):6699. doi: 10.3390/s20226699.
3
Active semi-supervised learning for biological data classification.
PLoS One. 2020 Aug 19;15(8):e0237428. doi: 10.1371/journal.pone.0237428. eCollection 2020.
5
Classifying changes in LN-18 glial cell morphology: a supervised machine learning approach to analyzing cell microscopy data via FIJI and WEKA.
Med Biol Eng Comput. 2020 Jul;58(7):1419-1430. doi: 10.1007/s11517-020-02177-x. Epub 2020 Apr 21.
7
Authentication of beef cuts by multielement and machine learning approaches.
J Trace Elem Med Biol. 2023 Jul;78:127164. doi: 10.1016/j.jtemb.2023.127164. Epub 2023 Mar 29.
8
Multiple Classifiers Based Semi-Supervised Polarimetric SAR Image Classification Method.
Sensors (Basel). 2021 Apr 25;21(9):3006. doi: 10.3390/s21093006.
9
A semi-supervised machine learning framework for microRNA classification.
Hum Genomics. 2019 Oct 22;13(Suppl 1):43. doi: 10.1186/s40246-019-0221-7.

引用本文的文献

1
Feature analysis for classification of trace fluorescent labeled protein crystallization images.
BioData Min. 2017 Apr 27;10:14. doi: 10.1186/s13040-017-0133-9. eCollection 2017.

本文引用的文献

1
Safety-aware semi-supervised classification.
IEEE Trans Neural Netw Learn Syst. 2013 Nov;24(11):1763-72. doi: 10.1109/TNNLS.2013.2263512.
2
Real-Time Protein Crystallization Image Acquisition and Classification System.
Cryst Growth Des. 2013 Jul 3;13(7):2728-2736. doi: 10.1021/cg3016029.
3
Protein crystallization analysis on the World Community Grid.
J Struct Funct Genomics. 2010 Mar;11(1):61-9. doi: 10.1007/s10969-009-9076-9. Epub 2010 Jan 14.
4
Leveraging genetic algorithm and neural network in automated protein crystal recognition.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1926-9. doi: 10.1109/IEMBS.2008.4649564.
5
Life in the fast lane for protein crystallization and X-ray crystallography.
Prog Biophys Mol Biol. 2005 Jul;88(3):359-86. doi: 10.1016/j.pbiomolbio.2004.07.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验