Suppr超能文献

转录因子Cabut通过感应糖分来协调能量代谢与生物钟。

The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing.

作者信息

Bartok Osnat, Teesalu Mari, Ashwall-Fluss Reut, Pandey Varun, Hanan Mor, Rovenko Bohdana M, Poukkula Minna, Havula Essi, Moussaieff Arieh, Vodala Sadanand, Nahmias Yaakov, Kadener Sebastian, Hietakangas Ville

机构信息

Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel.

Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland.

出版信息

EMBO J. 2015 Jun 3;34(11):1538-53. doi: 10.15252/embj.201591385. Epub 2015 Apr 27.

Abstract

Nutrient sensing pathways adjust metabolism and physiological functions in response to food intake. For example, sugar feeding promotes lipogenesis by activating glycolytic and lipogenic genes through the Mondo/ChREBP-Mlx transcription factor complex. Concomitantly, other metabolic routes are inhibited, but the mechanisms of transcriptional repression upon sugar sensing have remained elusive. Here, we characterize cabut (cbt), a transcription factor responsible for the repressive branch of the sugar sensing transcriptional network in Drosophila. We demonstrate that cbt is rapidly induced upon sugar feeding through direct regulation by Mondo-Mlx. We found that CBT represses several metabolic targets in response to sugar feeding, including both isoforms of phosphoenolpyruvate carboxykinase (pepck). Deregulation of pepck1 (CG17725) in mlx mutants underlies imbalance of glycerol and glucose metabolism as well as developmental lethality. Furthermore, we demonstrate that cbt provides a regulatory link between nutrient sensing and the circadian clock. Specifically, we show that a subset of genes regulated by the circadian clock are also targets of CBT. Moreover, perturbation of CBT levels leads to deregulation of the circadian transcriptome and circadian behavioral patterns.

摘要

营养感应通路会根据食物摄入情况调整新陈代谢和生理功能。例如,摄入糖分通过Mondo/ChREBP-Mlx转录因子复合体激活糖酵解和脂肪生成基因,从而促进脂肪生成。与此同时,其他代谢途径会受到抑制,但糖分感应时转录抑制的机制仍不清楚。在这里,我们鉴定了cabut(cbt),它是果蝇中负责糖分感应转录网络抑制分支的转录因子。我们证明,通过Mondo-Mlx的直接调控,cbt在摄入糖分后会迅速被诱导。我们发现,CBT会响应糖分摄入抑制几个代谢靶点,包括磷酸烯醇式丙酮酸羧激酶(pepck)的两种同工型。mlx突变体中pepck1(CG17725)的失调是甘油和葡萄糖代谢失衡以及发育致死的原因。此外,我们证明cbt在营养感应和生物钟之间提供了一个调控联系。具体来说,我们表明生物钟调控的一部分基因也是CBT的靶点。此外,CBT水平的扰动会导致生物钟转录组和生物钟行为模式失调。

相似文献

1
The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing.
EMBO J. 2015 Jun 3;34(11):1538-53. doi: 10.15252/embj.201591385. Epub 2015 Apr 27.
2
Mondo-Mlx Mediates Organismal Sugar Sensing through the Gli-Similar Transcription Factor Sugarbabe.
Cell Rep. 2015 Oct 13;13(2):350-64. doi: 10.1016/j.celrep.2015.08.081. Epub 2015 Oct 1.
3
Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in Drosophila.
PLoS Genet. 2013 Apr;9(4):e1003438. doi: 10.1371/journal.pgen.1003438. Epub 2013 Apr 4.
4
Sugar sensing by ChREBP/Mondo-Mlx-new insight into downstream regulatory networks and integration of nutrient-derived signals.
Curr Opin Cell Biol. 2018 Apr;51:89-96. doi: 10.1016/j.ceb.2017.12.007. Epub 2017 Dec 23.
5
The circadian clock, light, and cryptochrome regulate feeding and metabolism in Drosophila.
J Biol Rhythms. 2011 Dec;26(6):497-506. doi: 10.1177/0748730411420080.
6
Salt-Inducible Kinase 3 Provides Sugar Tolerance by Regulating NADPH/NADP Redox Balance.
Curr Biol. 2017 Feb 6;27(3):458-464. doi: 10.1016/j.cub.2016.12.032. Epub 2017 Jan 26.
7
Sugar-responsive inhibition of Myc-dependent ribosome biogenesis by Clockwork orange.
Cell Rep. 2023 Jul 25;42(7):112739. doi: 10.1016/j.celrep.2023.112739. Epub 2023 Jul 4.
8
High sugar diet promotes tumor progression paradoxically through aberrant upregulation of pepck1.
Cell Mol Life Sci. 2024 Sep 11;81(1):396. doi: 10.1007/s00018-024-05438-2.
9
Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila.
Cell Metab. 2008 Oct;8(4):289-300. doi: 10.1016/j.cmet.2008.09.006.
10
Overlapping Central Clock Network Circuitry Regulates Circadian Feeding and Activity Rhythms in Drosophila.
J Biol Rhythms. 2024 Oct;39(5):440-462. doi: 10.1177/07487304241263734. Epub 2024 Jul 26.

引用本文的文献

1
Polyclonality and metabolic heterogeneity in a colorectal tumor model.
iScience. 2025 Jul 10;28(8):113090. doi: 10.1016/j.isci.2025.113090. eCollection 2025 Aug 15.
2
A novel insertional allele of the gene is associated with severe mutant phenotypes in .
Front Genet. 2024 Jun 17;15:1355368. doi: 10.3389/fgene.2024.1355368. eCollection 2024.
4
Effects of circadian clock disruption on gene expression and biological processes in Aedes aegypti.
BMC Genomics. 2024 Feb 13;25(1):170. doi: 10.1186/s12864-024-10078-8.
5
Genomes from historical Drosophila melanogaster specimens illuminate adaptive and demographic changes across more than 200 years of evolution.
PLoS Biol. 2023 Oct 12;21(10):e3002333. doi: 10.1371/journal.pbio.3002333. eCollection 2023 Oct.
6
MLX plays a key role in lipid and glucose metabolism in humans: Evidence from in vitro and in vivo studies.
Metabolism. 2023 Jul;144:155563. doi: 10.1016/j.metabol.2023.155563. Epub 2023 Apr 21.
8
AmAtg2B-Mediated Lipophagy Regulates Lipolysis of Pupae in .
Int J Mol Sci. 2023 Jan 20;24(3):2096. doi: 10.3390/ijms24032096.
9
Circadian gene expression in mouse renal proximal tubule.
Am J Physiol Renal Physiol. 2023 Mar 1;324(3):F301-F314. doi: 10.1152/ajprenal.00231.2022. Epub 2023 Feb 2.

本文引用的文献

1
Circadian timing of metabolism in animal models and humans.
J Intern Med. 2015 May;277(5):513-27. doi: 10.1111/joim.12347. Epub 2015 Feb 6.
2
Meal frequency and timing in health and disease.
Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16647-53. doi: 10.1073/pnas.1413965111. Epub 2014 Nov 17.
3
Sirtuins and the circadian clock: bridging chromatin and metabolism.
Sci Signal. 2014 Sep 9;7(342):re6. doi: 10.1126/scisignal.2005685.
5
Methods for studying metabolism in Drosophila.
Methods. 2014 Jun 15;68(1):105-15. doi: 10.1016/j.ymeth.2014.02.034. Epub 2014 Mar 12.
6
A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis.
J Biol Chem. 2014 Mar 14;289(11):7257-63. doi: 10.1074/jbc.C113.544759. Epub 2014 Feb 4.
7
CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis.
BMB Rep. 2013 Dec;46(12):567-74. doi: 10.5483/bmbrep.2013.46.12.248.
8
Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men.
Diabetes Care. 2013 Nov;36(11):3732-8. doi: 10.2337/dc13-0800. Epub 2013 Sep 11.
9
Molecular architecture of the mammalian circadian clock.
Trends Cell Biol. 2014 Feb;24(2):90-9. doi: 10.1016/j.tcb.2013.07.002. Epub 2013 Aug 1.
10
The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome.
Science. 2013 Aug 16;341(6147):1237973. doi: 10.1126/science.1237973. Epub 2013 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验