Benetti Fernando, Furini Cristiane Regina Guerino, de Carvalho Myskiw Jociane, Provensi Gustavo, Passani Maria Beatrice, Baldi Elisabetta, Bucherelli Corrado, Munari Leonardo, Izquierdo Ivan, Blandina Patrizio
Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil;
Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia e Tossicologia, Universitá di Firenze, 50139 Firenze, Italy; and.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2536-42. doi: 10.1073/pnas.1506109112. Epub 2015 Apr 27.
Recent discoveries demonstrated that recruitment of alternative brain circuits permits compensation of memory impairments following damage to brain regions specialized in integrating and/or storing specific memories, including both dorsal hippocampus and basolateral amygdala (BLA). Here, we first report that the integrity of the brain histaminergic system is necessary for long-term, but not for short-term memory of step-down inhibitory avoidance (IA). Second, we found that phosphorylation of cyclic adenosine monophosphate (cAMP) responsive-element-binding protein, a crucial mediator in long-term memory formation, correlated anatomically and temporally with histamine-induced memory retrieval, showing the active involvement of histamine function in CA1 and BLA in different phases of memory consolidation. Third, we found that exogenous application of histamine in either hippocampal CA1 or BLA of brain histamine-depleted rats, hence amnesic, restored long-term memory; however, the time frame of memory rescue was different for the two brain structures, short lived (immediately posttraining) for BLA, long lasting (up to 6 h) for the CA1. Moreover, long-term memory was formed immediately after training restoring of histamine transmission only in the BLA. These findings reveal the essential role of histaminergic neurotransmission to provide the brain with the plasticity necessary to ensure memorization of emotionally salient events, through recruitment of alternative circuits. Hence, our findings indicate that the histaminergic system comprises parallel, coordinated pathways that provide compensatory plasticity when one brain structure is compromised.
最近的研究发现表明,在专门整合和/或存储特定记忆的脑区(包括背侧海马体和基底外侧杏仁核,即BLA)受损后,募集替代性脑回路可补偿记忆损伤。在此,我们首先报告,脑组胺能系统的完整性对于阶梯式抑制性回避(IA)的长期记忆是必要的,但对于短期记忆则不是。其次,我们发现环磷酸腺苷(cAMP)反应元件结合蛋白的磷酸化是长期记忆形成中的关键介质,在解剖学和时间上与组胺诱导的记忆检索相关,表明组胺功能在记忆巩固的不同阶段在CA1和BLA中积极参与。第三,我们发现,在脑组胺耗竭的大鼠的海马CA1或BLA中外源性应用组胺,从而造成失忆,可恢复长期记忆;然而,两种脑结构的记忆挽救时间框架不同,BLA是短暂的(训练后立即),CA1是持久的(长达6小时)。此外,仅在BLA中恢复组胺传递后,训练后立即形成长期记忆。这些发现揭示了组胺能神经传递的重要作用,即通过募集替代性回路为大脑提供确保记忆情绪突出事件所需的可塑性。因此,我们的发现表明,组胺能系统包含平行、协调的通路,当一个脑结构受损时可提供代偿性可塑性。