Butschke Burkhard, Fillman Kathlyn L, Bendikov Tatyana, Shimon Linda J W, Diskin-Posner Yael, Leitus Gregory, Gorelsky Serge I, Neidig Michael L, Milstein David
§Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
¶Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
Inorg Chem. 2015 May 18;54(10):4909-26. doi: 10.1021/acs.inorgchem.5b00509. Epub 2015 Apr 28.
Herein we present a series of new α-iminopyridine-based iron-PNN pincer complexes [FeBr2LPNN] (1), [Fe(CO)2LPNN] (2), Fe(CO)2LPNN (3), Fe(F)(CO)2LPNN (4), and Fe(H)(CO)2LPNN (5) with formal oxidation states ranging from Fe(0) to Fe(II) (LPNN = 2-[(di-tert-butylphosphino)methyl]-6-[1-(2,4,6-mesitylimino)ethyl]pyridine). The complexes were characterized by a variety of methods including (1)H, (13)C, (15)N, and (31)P NMR, IR, Mössbauer, and X-ray photoelectron spectroscopy (XPS) as well as electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopy, SQUID magnetometry, and X-ray crystallography, focusing on the assignment of the metal oxidation states. Ligand structural features suggest that the α-iminopyridine ligand behaves as a redox non-innocent ligand in some of these complexes, particularly in [Fe(CO)2LPNN] (2), in which it appears to adopt the monoanionic form. In addition, the NMR spectroscopic features ((13)C, (15)N) indicate the accumulation of charge density on parts of the ligand for 2. However, a combination of spectroscopic measurements that more directly probe the iron oxidation state (e.g., XPS), density functional theory (DFT) calculations, and electronic absorption studies combined with time-dependent DFT calculations support the description of the metal atom in 2 as Fe(0). We conclude from our studies that ligand structural features, while useful in many assignments of ligand redox non-innocence, may not always accurately reflect the ligand charge state and, hence, the metal oxidation state. For complex 2, the ligand structural changes are interpreted in terms of strong back-donation from the metal center to the ligand as opposed to electron transfer.
在此,我们展示了一系列基于α-亚氨基吡啶的新型铁-PNN钳形配合物[FeBr₂LPNN] (1)、[Fe(CO)₂LPNN] (2)、Fe(CO)₂LPNN (3)、Fe(F)(CO)₂LPNN (4)和Fe(H)(CO)₂LPNN (5),其形式氧化态范围从Fe(0)到Fe(II)(LPNN = 2-[(二叔丁基膦基)甲基]-6-[1-(2,4,6-均三甲苯基亚氨基)乙基]吡啶)。这些配合物通过多种方法进行了表征,包括¹H、¹³C、¹⁵N和³¹P核磁共振、红外光谱、穆斯堡尔谱、X射线光电子能谱(XPS)以及电子顺磁共振(EPR)和磁圆二色性(MCD)光谱、超导量子干涉仪磁强计和X射线晶体学,重点是金属氧化态的归属。配体结构特征表明,α-亚氨基吡啶配体在其中一些配合物中表现为氧化还原非无辜配体,特别是在[Fe(CO)₂LPNN] (2)中,它似乎采用单阴离子形式。此外,核磁共振光谱特征(¹³C、¹⁵N)表明配合物2的配体部分存在电荷密度积累。然而,更直接探测铁氧化态的光谱测量(例如XPS)、密度泛函理论(DFT)计算以及结合含时DFT计算的电子吸收研究的组合支持将配合物2中的金属原子描述为Fe(0)。我们从研究中得出结论,配体结构特征虽然在许多配体氧化还原非无辜性的归属中有用,但可能并不总是准确反映配体电荷状态,因此也不能准确反映金属氧化态。对于配合物2,配体结构变化被解释为从金属中心到配体的强反馈π键作用,而不是电子转移。