de Zwart Felix J, Reus Bente, Laporte Annechien A H, Sinha Vivek, de Bruin Bas
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
Inorg Chem. 2021 Mar 1;60(5):3274-3281. doi: 10.1021/acs.inorgchem.0c03685. Epub 2021 Feb 15.
The conventional method of assigning formal oxidation states (FOSs) to metals and ligands is an important tool for understanding and predicting the chemical reactivity, in particular, in catalysis research. For complexes containing redox-noninnocent ligands, the oxidation state of the ligand can be ambiguous (i.e., their spectroscopic oxidation state can differ from the FOS) and thus frustrates the assignment of the oxidation state of the metal. A quantitative correlation between the empirical metric data of redox-active ligands and their oxidation states using a metrical oxidation state (MOS) model has been developed for catecholate- and amidophenoxide-derived ligands by Brown. In the present work, we present a MOS model for 1,4-diazabutadiene (DAD) ligands. This model is based on a similar approach as reported by Brown, correlating the intra-ligand bond lengths of the DAD moiety in a quantitative manner with the MOS using geometrical information from X-ray structures in the Cambridge Crystallographic Data Center (CCDC) database. However, an accurate determination of the MOS of these ligands turned out to be dependent on the coordination mode of the DAD moiety, which can adopt both a planar κ--geometry and a η- π-coordination mode in (transition) metal complexes in its doubly reduced, dianionic enediamide oxidation state. A reliable MOS model was developed taking the intrinsic differences in intra-ligand bond distances between these coordination modes of the DAD ligand into account. Three different models were defined and tested using different geometric parameters (C═C → M distance, M-N-C angle, and M-N-C-C torsion angle) to describe the C═C backbone coordination with the metal in the η- π-coordination mode of the DAD ligand. Statistical analysis revealed that the C═C → M distance best describes the η- coordination mode using a cutoff value of 2.46 Å for π-coordination. The developed MOS model was used to validate the oxidation state assignment of elements not contained within the training set (Sr, Yb, and Ho), thus demonstrating the applicability of the MOS model to a wide range of complexes. Chromium complexes with complex electronic structures were also shown to be accurately described by MOS analysis. Furthermore, it is shown that a combination of MOS analysis and FOD calculations provides an inexpensive method to gain insight into the electronic structure of singlet spin state (S = 0) [M(tropdad)] transition-metal complexes showing (potential) singlet biradical character.
给金属和配体指定形式氧化态(FOSs)的传统方法是理解和预测化学反应性的重要工具,尤其是在催化研究中。对于含有氧化还原非无辜配体的配合物,配体的氧化态可能不明确(即其光谱氧化态可能与FOS不同),从而阻碍了金属氧化态的确定。Brown针对儿茶酚盐和酰胺酚盐衍生的配体,利用度量氧化态(MOS)模型建立了氧化还原活性配体的经验度量数据与其氧化态之间的定量相关性。在本工作中,我们提出了一种用于1,4 - 二氮杂丁二烯(DAD)配体的MOS模型。该模型基于与Brown所报道的类似方法,利用剑桥晶体学数据中心(CCDC)数据库中X射线结构的几何信息,将DAD部分的配体内键长与MOS进行定量关联。然而,这些配体的MOS的准确确定取决于DAD部分的配位模式,在其双还原的二阴离子烯二酰胺氧化态下,DAD部分在(过渡)金属配合物中既可以采用平面κ - 几何构型,也可以采用η - π配位模式。考虑到DAD配体这些配位模式之间配体内键距的内在差异,开发了一个可靠的MOS模型。定义并测试了三种不同的模型,使用不同的几何参数(C═C → M距离、M - N - C角度和M - N - C - C扭转角)来描述DAD配体在η - π配位模式下C═C主链与金属的配位情况。统计分析表明,C═C → M距离最能描述η配位模式,π配位的截止值为2.46 Å。所开发的MOS模型用于验证训练集之外元素(Sr、Yb和Ho)的氧化态归属,从而证明了MOS模型在广泛的配合物中的适用性。具有复杂电子结构的铬配合物也被证明可以通过MOS分析准确描述。此外,结果表明,MOS分析和FOD计算相结合提供了一种低成本的方法,用于深入了解具有(潜在)单重态双自由基特征的单重态自旋态(S = 0)[M(tropdad)]过渡金属配合物的电子结构。