Méndez Isabel, Vázquez-Martínez Olivia, Hernández-Muñoz Rolando, Valente-Godínez Héctor, Díaz-Muñoz Mauricio
Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Campus UNAM-Juriquilla, Querétaro, 76230, QRO, Mexico.
Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Ciudad Universitaria, Ciudad de México, 04510, DF, Universidad Nacional Autónoma de México, Mexico.
Biochimie. 2016 May;124:178-186. doi: 10.1016/j.biochi.2015.04.014. Epub 2015 Apr 26.
Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes.
大约24小时的节律在大多数生物体中普遍存在,被称为昼夜节律。每个细胞中都有一个分子昼夜节律钟,由相互连接的“时钟”基因和转录因子的反馈系统维持。在哺乳动物中,计时系统由中央起搏器视交叉上核与一组外周振荡器协同形成。最近,人们认识到分子昼夜节律钟与细胞生物能量学基础的生化途径之间存在广泛的相互联系。代谢网络的一个主要调节因子是电子供体和受体之间的电子流动。伴随的还原和氧化(氧化还原)反应直接影响合成代谢和分解代谢过程之间的平衡。本综述总结并讨论了关于分子昼夜节律钟、氧化还原反应和氧化还原信号之间相互和动态相互作用的最新发现。范围包括氧化还原辅酶(NAD(P)+/NAD(P)H、GSH/GSSG)、活性氧(超氧阴离子、过氧化氢)、抗氧化剂(褪黑素)以及调节氧化还原状态的生理事件(进食条件、昼夜节律)在决定分子昼夜节律钟计时能力方面所起的调节作用。此外,我们还讨论了一种纯粹基于过氧化物酶的氧化还原酶的代谢昼夜节律钟,它存在于哺乳动物红细胞和其他生物系统中。计时系统和代谢网络都是更好地理解诸如代谢综合征、肥胖症和糖尿病等广泛病理状况的关键。